Certain properties of nanohydroxyapatite obtained from <i>Lates calcarifer</i> fish bone


  • Le Ho Khanh Hy Institute of Oceanography, VAST, Vietnam
  • Dao Viet Ha Institute of Oceanography, VAST, Vietnam
  • Pham Xuan Ky Institute of Oceanography, VAST, Vietnam
  • Nguyen Phuong Anh Institute of Oceanography, VAST, Vietnam
  • Phan Bao Vy Institute of Oceanography, VAST, Vietnam
  • Doan Thi Thiet Institute of Oceanography, VAST, Vietnam




Bone, Lates calcarifer fish, 600oC, 1, 2, 4 hours, nanohydroxyapatite, B-type biological hydroxyapatites.


Fish bone by-products are considered as abundant source of hydroxyapatite (HAp). The preparation of HAp from fish bones not only contributes to improving the value of by-products but also minimizes negative impacts on the environment. In this study, nanohydroxyapatite was successfully obtained from Lates calcarifer fish bone purchased from seafood export company in Khanh Hoa province. Fish bones were under alkali treatment and then heated at 600oC within different time intervals of 1, 2 and 4 hours. Analysis of XRD and SEM showed that the calcium formed was completely single-phase and possessed an average size of 50–64 nm depending on the calcination time. The results of the Ca/P molar ratio from 1.839 to 1.847 prove that the nano-HAp powders are B-type biological hydroxyapatites, which has been confirmed by FTIR spectrum. In addition, the content of heavy metals such as As, Pb, Hg, Cd is detected within safety limits. These properties allow nano-HAp powders to be applied in food and medicine fields. 


Download data is not yet available.


[1] Huang, Y. C., Hsiao, P. C., and Chai, H. J., 2011. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), 1825–1831. https://doi.org/10.1016/j.ceramint.2011.01.018.

[2] Nieh, T. G., Choi, B. W., and Jankowski, A. F., 2000. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings (No. UCRL-JC-141229). Lawrence Livermore National Lab., CA (US).

[3] Robinson, C., Connell, S., Kirkham, J., Shore, R., and Smith, A., 2004. Dental enamel—a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry, 14(14), 2242–2248. https://doi.org/10.1039/B401154F.

[4] Tang, P. F., Li, G., Wang, J. F., Zheng, Q. J., and Wang, Y., 2009. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 90(2), 886–893. https://doi.org/10.1002/jbm.b.31360.

[5] Staffa, G., Nataloni, A., Compagnone, C., and Servadei, F., 2007. Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta neurochirurgica, 149(2), 161–170. https://doi.org/10.1007/s00701-006-1078-9.

[6] Kano, S., Yamazaki, A., Otsuka, R., Ohgaki, M., Akao, M., and Aoki, H., 1994. Application of hydroxyapatite-sol as drug carrier. Bio-medical Materials and Engineering, 4(4), 283–290. Doi: 10.3233/BME-1994-4404.

[7] Hirata, A., Maruyama, Y., Onishi, K., Hayashi, A., Saze, M., and Okada, E., 2004. A vascularized artificial bone graft using the periosteal flap and porous hydroxyapatite; basic research and preliminary clinical application: s-iv-04. Wound Repair and Regeneration, 21(1).

[8] Venkatesan, J., and Kim, S. K., 2010. Effect of temperature on isolation and characterization of hydroxyapatite from tuna (Thunnus obesus) bone. Materials, 3(10), 4761–4772. https://doi.org/10.3390/ma3104761.

[9] Reichert, J., and Binner, J. G. P., 1996. An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. Journal of Materials Science, 31(5), 1231–1241. https://doi.org/10.1007/BF00353102.

[10] Roy, D. M., and Linnehan, S. K., 1974. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 247(5438), 220–222. Doi: 10.1038/247220a0.

[11] White, E., and Shors, E. C., 1986. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dental Clinics of North America, 30(1), 49–67.

[12] Vu Duy Hien, Dao Quoc Huong, Phan Thi Ngoc Bich., 2010. Study of the formation of porous hydroxyapatite ceramics from corals via hydrothermal process. Vietnam Journal of Chemistry, 48(5), 591–596.

[13] Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F. N., and Ferreira, J. M. F., 2005. Scaffolds for bone restoration from cuttlefish. Bone, 37(6), 850–857. https://doi.org/10.1016/j.bone.2005.06.018.

[14] Rocha, J. H. G., Lemos, A. F., Kannan, S., Agathopoulos, S., and Ferreira, J. M. F., 2005. Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Journal of Materials Chemistry, 15(47), 5007–5011. https://doi.org/10.1039/B510122K.

[15] Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Kannan, S., Valerio, P., and Ferreira, J. M. F., 2006. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(1), 160–168. https://doi.org/10.1002/jbm.a.30566.

[16] Sarin, P., Lee, S. J., Apostolov, Z. D., and Kriven, W. M., 2011. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. Journal of the American Ceramic Society, 94(8), 2362–2370. https://doi.org/10.1111/j.1551-2916.2011.04404.x.

[17] Venkatesan, J., Rekha, P. D., Anil, S., Bhatnagar, I., Sudha, P. N., Dechsakulwatana, C., ... and Shim, M. S., 2018. Hydroxyapatite from cuttlefish bone: Isolation, characterizations, and applications. Biotechnology and Bioprocess Engineering, 23(4), 383–393. https://doi.org/10.1007/s12257-018-0169-9.

[18] Faksawat, K., Sujinnapram, S., Limsuwan, P., Hoonnivathana, E., and Naemchanthara, K., 2015. Preparation and characteristic of hydroxyapatite synthesized from cuttlefish bone by precipitation method. In Advanced Materials Research (Vol. 1125, pp. 421–425). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.1125.421.

[19] Lemos, A. F., Rocha, J. H. G., Quaresma, S. S. F., Kannan, S., Oktar, F. N., Agathopoulos, S., and Ferreira, J. M. F., 2006. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society, 26(16), 3639–3646. https://doi.org/10.1016/j.jeurceramsoc.2005.12.011.

[20] Zhang, X., and Vecchio, K. S., 2006. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells. Materials Science and Engineering: C, 26(8), 1445–1450. https://doi.org/10.1016/j.msec.2005.08.007.

[21] Yang, Y., Yao, Q., Pu, X., Hou, Z., and Zhang, Q., 2011. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chemical Engineering Journal, 173(3), 837–845. https://doi.org/10.1016/j.cej.2011.07.029.

[22] Pal, A., Maity, S., Chabri, S., Bera, S., Chowdhury, A. R., Das, M., and Sinha, A., 2017. Mechanochemical synthesis of nanocrystalline hydroxyapatite from Mercenaria clam shells and phosphoric acid. Biomedical Physics & Engineering Express, 3(1), 015010.

[23] Razali, N. M., Pramanik, S., Osman, N. A., Radzi, Z., and Pingguan-Murphy, B., 2016. Conversion of calcite from cockle shells to bioactive nanorod hydroxyapatite for biomedical applications. J. Ceram. Process. Res, 17, 699–706.

[24] Goloshchapov, D. L., Kashkarov, V. M., Rumyantseva, N. A., Seredin, P. V., Lenshin, A. S., Agapov, B. L., and Domashevskaya, E. P., 2013. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen's eggshell. Ceramics International, 39(4), 4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050.

[25] Gutiérrez-Prieto, S. J., Fonseca, L. F., Sequeda-Castañeda, L. G., Díaz, K. J., Castañeda, L. Y., Leyva-Rojas, J. A., ... and Acosta, A. P., 2019. Elaboration and Biocompatibility of an Eggshell-Derived Hydroxyapatite Material Modified with Si/PLGA for Bone Regeneration in Dentistry. International Journal of Dentistry, 2019. https://doi.org/10.1155/2019/5949232.

[26] Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., and Mann, S., 2003. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 142(3), 327–333. https://doi.org/ 10.1016/S1047-8477(03)00053-4.

[27] Mondal, S., Mahata, S., Kundu, S., and Mondal, B., 2010. Processing of natural resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 109(4), 234–239. https://doi.org/10.1179/ 174367613X13789812714425.

[28] Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., and Tang, I. M., 2016. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Materials Science and Engineering: C, 62, 183–189. https://doi.org/10.1016/j.msec.2016.01.051.

[29] Zainol, I., Adenan, N. H., Rahim, N. A., and Jaafar, C. A., 2019. Extraction of natural hydroxyapatite from tilapia fish scales using alkaline treatment. Materials Today: Proceedings, 16, 1942–1948. https://doi.org/10.1016/j.matpr.2019.06.072.

[30] Barua, E., Deb, P., Lala, S. D., and Deoghare, A. B., 2019. Extraction of Hydroxyapatite from Bovine Bone for Sustainable Development. In Biomaterials in Orthopaedics and Bone Regeneration (pp. 147–158). Springer, Singapore. https://doi.org/10.1007/978-981-13-9977-0_10.

[31] Ayatollahi, M. R., Yahya, M. Y., Shirazi, H. A., and Hassan, S. A., 2015. Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceramics International, 41(9), 10818–10827. https://doi.org/10.1016/j.ceramint.2015.05.021.

[32] Ozawa, M., and Suzuki, S., 2002. Microstructural development of natural hydroxyapatite originated from fish‐bone waste through heat treatment. Journal of the American Ceramic Society, 85(5), 1315–1317. https://doi.org/10.1111/j. 1151-2916.2002.tb00268.x.

[33] Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., and León, B., 2012. Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478–486. https://doi.org/10.1016/j.msec.2011.11.021.

[34] Piccirillo, C., Silva, M. F., Pullar, R. C., Da Cruz, I. B., Jorge, R., Pintado, M. M. E., and Castro, P. M., 2013. Extraction and characterisation of apatite-and tricalcium phosphate-based materials from cod fish bones. Materials Science and Engineering: C, 33(1), 103–110. https://doi.org/10.1016/j.msec.2012.08.014.

[35] Nguyen Van Hoa, Nguyen Cong Minh, Pham Anh Dat. 2018. Preparation and characterization of nanohydroxyapatite from fish bones: (2) use of enzyme for pre-treatment. Journal of Fisheries Science and Technology, 2, 39–45.

[36] Dao Quoc Huong, Pham Thi Sao, 2011. Synthesis of porous hydroxyapatite ceramics from limestone via hydrothermal process. Vietnam Journal of Science and Technology, 49(2), 93–99.

[37] Venkatesan, J., Lowe, B., Manivasagan, P., Kang, K. H., Chalisserry, E. P., Anil, S., ... and Kim, S. K., 2015. Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials, 8(8), 5426–5439. https://doi.org/10.3390/ma8085253.

[38] Dabiri, S. M. H., Rezaie, A. A., Moghimi, M., and Rezaie, H., 2018. Extraction of Hydroxyapatite from Fish Bones and Its Application in Nickel Adsorption. BioNanoScience, 8(3), 823–834. https://doi.org/10.1007/s12668-018-0547-y.

[39] Mustafa, N., Ibrahim, M. H. I., Asmawi, R., and Amin, A. M., 2015. Hydroxyapatite extracted from waste fish bones and scales via calcination method. In Applied Mechanics and Materials (Vol. 773, pp. 287–290). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.773-774.287.

[40] Le Ho Khanh Hy, Pham Xuan Ky, Dao Viet Ha, Nguyen Thu Hong, Phan Bao Vy, Doan Thi Thiet, Nguyen Phuong Anh, 2018. Certain properties of calcium hydroxyapatite from skipjack tuna bone (Katsuwonus pelamis). Vietnam Journal of Marine Science and Technology, 18(4A), 151–163. https://doi.org/10.15625/8159-3097/18/4A/13643.

[41] Coelho, T. M., Nogueira, E. S., Steimacher, A., Medina, A. N., Weinand, W. R., Lima, W. M., ... and Bento, A. C., 2006. Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. Journal of Applied Physics, 100(9), 094312. https://doi.org/10.1063/1.2369647.

[42] Paz, A., Guadarrama, D., López, M., E González, J., Brizuela, N., and Aragón, J., 2012. A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Química Nova, 35(9), 1724–1727. https://doi.org/10.1590/ S0100-40422012000900004.

[43] Ślósarczyk, A., Paszkiewicz, Z., and Paluszkiewicz, C. (2005). FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 744, 657–661. https://doi.org/10.1016/j.molstruc.2004.11.078.

[44] Berzina-Cimdina, L., and Borodajenko, N., 2012. Research of calcium phosphates using Fourier transform infrared spectroscopy. Infrared Spectroscopy-Materials Science, Engineering and Technology, 12(7), 251–263.

[45] Antonakos, A., Liarokapis, E., and Leventouri, T., 2007. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28(19), 3043–3054. https://doi.org/10.1016/j.biomaterials.2007.02.028.

[46] Joschek, S., Nies, B., Krotz, R., and Göpferich, A., 2000. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 21(16), 1645–1658. https://doi.org/10.1016/S0142-9612(00)00036-3.

[47] Redey, S. A., Razzouk, S., Rey, C., Bernache‐Assollant, D., Leroy, G., Nardin, M., and Cournot, G., 1999. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 45(2), 140–147. https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<140::AID-JBM9>3.0.CO;2-I.

[48] Safarzadeh, M., Ramesh, S., Tan, C. Y., Chandran, H., Ching, Y. C., Noor, A. F. M., ... and Teng, W. D., 2020. Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios. Boletín de la Sociedad Española de Cerámica y Vidrio, 59(2), 73–80. https://doi.org/10.1016/j.bsecv.2019.08.001.