• Le Ho Khanh Hy Institute of Oceanography, VAST, Vietnam
  • Pham Xuan Ky Institute of Oceanography, VAST, Vietnam
  • Dao Viet Ha Institute of Oceanography, VAST, Vietnam
  • Nguyen Thu Hong Institute of Oceanography, VAST, Vietnam
  • Phan Bao Vy Institute of Oceanography, VAST, Vietnam
  • Doan Thi Thiet Institute of Oceanography, VAST, Vietnam
  • Nguyen Phuong Anh Institute of Oceanography, VAST, Vietnam




Bone, skipjack tuna bone, Katsuwonus pelamis, 600oC, 900oC, 1200oC, hydroxyapatite Ca10(PO4)6(OH)2, β-tricalcium phosphate Ca3(PO4)2.


This paper is concerned with certain properties of calcium hydroxyapatite from skipjack tuna bone (Katsuwonus pelamis) which are by-products of fish export industry. Hydroxyapatite Ca10(PO4)6(OH)2 and β-tricalcium phosphate Ca3(PO4)2, the high-value compounds, have been successfully extracted from skipjack tuna bones. The bones were heated at different temperatures of 600oC, 900oC, 1200oC. While at 600oC hydroxyapatites were obtained with Ca/P ratio of 1.658, comparable to the value of 1.67 found in human bone; the hydroxyapatite crystals of average size of 0.25 µm were formed with the same size distribution. In case of heated bone samples at 900°C and 1200°C, the calcium formed were biphasic calcium phosphate composed of hydroxyapatite and β-tricalcium phosphate; the Ca/P ratio was between 1.660–1.665; the calcium crystals of more than 1 µm were highly porous and connected to each other in priority orientation of tube direction.


Download data is not yet available.


Tang, P. F., Li, G., Wang, J. F., Zheng, Q. J., and Wang, Y., 2009. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 90(2), 886–893.

Staffa, G., Nataloni, A., Compagnone, C., and Servadei, F., 2007. Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochirurgica, 149(2), 161–170.

Hirata, A., Maruyama, Y., Onishi, K., Hayashi, A., Saze, M., and Okada, E., 2004. a Vascularized Artificial Bone Graft Using The Periosteal Flap And Porous Hydroxyapatite; Basic Research And Preliminary Clinical Application: s-iv-04. Wound Repair and Regeneration, 21(1), A4.

Venkatesan, J., & Kim, S. K. (2010). Effect of temperature on isolation and characterization of hydroxyapatite from tuna (Thunnus obesus) bone. Materials, 3(10), 4761–4772.

Venkatesan, J., Qian, Z. J., Ryu, B., Kumar, N. A., and Kim, S. K., 2011. Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydrate Polymers, 83(2), 569–577.

Salman, S., Soundararajan, S., Safina, G., Satoh, I., and Danielsson, B., 2008. Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta, 77(2), 490–493.

Reichert, J., and Binner, J. G. P., 1996. An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. Journal of Materials Science, 31(5), 1231–1241.

Kano, S., Yamazaki, A., Otsuka, R., Ohgaki, M., Akao, M., and Aoki, H., 1994. Application of hydroxyapatite-sol as drug carrier. Bio-medical Materials and Engineering, 4(4), 283–290.

Nieh, T. G., Choi, B. W., and Jankowski, A. F., 2000. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings (No. UCRL-JC-141229). Lawrence Livermore National Lab., CA (US).

Robinson, C., Connell, S., Kirkham, J., Shore, R., and Smith, A., 2004. Dental enamel-a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry, 14(14), 2242–2248.

Viswanath, B., Raghavan, R., Gurao, N. P., Ramamurty, U., and Ravishankar, N., 2008. Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis. Acta Biomaterialia, 4(5), 1448–1454.

Sanosh, K. P., Chu, M. C., Balakrishnan, A., Kim, T. N., and Cho, S. J., 2010. Sol-gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Current Applied Physics, 10(1), 68–71.

Roy, D. M., and Linnehan, S. K., 1974. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 247(5438), 220–222.

White, E., and Shors, E. C., 1986. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dental Clinics of North America, 30(1), 49–67.

Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F. N., and Ferreira, J. M. F., 2005. Scaffolds for bone restoration from cuttlefish. Bone, 37(6), 850–857.

Rocha, J. H. G., Lemos, A. F., Kannan, S., Agathopoulos, S., and Ferreira, J. M. F., 2005. Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Journal of Materials Chemistry, 15(47), 5007–5011.

Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Kannan, S., Valerio, P., and Ferreira, J. M. F., 2006. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(1), 160–168.

Sarin, P., Lee, S. J., Apostolov, Z. D., and Kriven, W. M., 2011. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. Journal of the American Ceramic Society, 94(8), 2362–2370.

Lemos, A. F., Rocha, J. H. G., Quaresma, S. S. F., Kannan, S., Oktar, F. N., Agathopoulos, S., and Ferreira, J. M. F., 2006. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society, 26(16), 3639–3646.

Zhang, X., and Vecchio, K. S., 2006. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells. Materials Science and Engineering: C, 26(8), 1445–1450.

Yang, Y., Yao, Q., Pu, X., Hou, Z., and Zhang, Q., 2011. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chemical Engineering Journal, 173(3), 837–845.

Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., and Mann, S., 2003. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 142(3), 327–333.

Mondal, S., Mahata, S., Kundu, S., and Mondal, B., 2010. Processing of natural resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 109(4), 234–239.

Huang, Y. C., Hsiao, P. C., and Chai, H. J., 2011. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), 1825–1831.

Ozawa, M., and Suzuki, S., 2002. Microstructural development of natural hydroxyapatite originated from fish‐bone waste through heat treatment. Journal of the American Ceramic Society, 85(5), 1315–1317.

Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., and León, B., 2012. Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478–486.

Piccirillo, C., Silva, M. F., Pullar, R. C., da Cruz, I. B., Jorge, R., Pintado, M. M. E., and Castro, P. M., 2013. Extraction and characterisation of apatite-and tricalcium phosphate-based materials from cod fish bones. Materials Science and Engineering: C, 33(1), 103–110.

Venkatesan, J., Lowe, B., Manivasagan, P., Kang, K. H., Chalisserry, E., Anil, S., ... and Kim, S. K., 2015. Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials, 8(8), 5426–5439.

Đào Quốc Hương, Phan Thị Ngọc Bích, 2007. Tổng hợp bột hydroxyapatit kích thước nano bằng phương pháp kết tủa hoá học. Tạp chí Hoá học, 45(2), 147–151.

Vũ Duy Hiển, Đào Quốc Hương, Phan Thị Ngọc Bích, 2008. Nghiên cứu chế tạo gốm hydroxyapatit từ khung xốp tự nhiên của mai mực bằng phản ứng thuỷ nhiệt. Tạp chí Hoá học, 46(2A), 118–123.

Hien, V. D., Huong, D. Q., and Bich, P. T. N., 2010. Study of the formation of porous hydroxyapatite ceramics from corals via hydrothermal process. Vietnam Journal of Chemistry, 48(5), 591–596.

Đoàn Bộ, Bùi Thanh Hùng, Nguyễn Văn Hướng, 2015. Dự báo khai thác năm 2015 nguồn lợi cá ngừ vằn ở vùng biển xa bờ miền Trung. Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, 31(3S), 14–19.

Coelho, T. M., Nogueira, E. S., Steimacher, A., Medina, A. N., Weinand, W. R., Lima, W. M.,... and Bento, A. C., 2006. Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. Journal of applied physics, 100(9), 094312.

Paz, A., Guadarrama, D., López, M., E González, J., Brizuela, N., and Aragón, J., 2012. A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Química Nova, 35(9), 1724–1727.

Ślósarczyk, A., Paszkiewicz, Z., and Paluszkiewicz, C., 2005. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 744, 657–661.

Ji, G., Zhu, H., Jiang, X., Qi, C., and Zhang, X. M., 2009. Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders. Journal of Applied Polymer Science, 114(5), 3168–3176.

Berzina-Cimdina, L., and Borodajenko, N., 2012. Research of calcium phosphates using Fourier transform infrared spectroscopy. In Infrared Spectroscopy-Materials Science, Engineering and Technology. IntechOpen.

Tavares, D. D. S., Castro, L. D. O., Soares, G. D. D. A., Alves, G. G., and Granjeiro, J. M., 2013. Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. Journal of Applied Oral Science, 21(1), 37–42.

Anand, G., Pandey, J. K., and Rana, S. (Eds.), 2017. Nanotechnology for Energy and Water: Proceedings of the International Conference NEW-2017. Springer.

De Groot, K., 1983. Bioceramics of calcium phosphate. Ceramic of calcium phosphate: Preparation and properties, 100–114.

Muralithran, G., and Ramesh, S., 2000. The effects of sintering temperature on the properties of hydroxyapatite. Ceramics International, 26(2), 221–230.