Evaluation of biological activities of some seaweed and seagrass species in the coastal area of Vietnam

Tran Thi Hong Ha, Le Mai Huong, Le Huu Cuong, Nguyen Dinh Tuan, Hoang Kim Chi, Tran Thi Nhu Hang, Do Huu Nghi, Dang Thi Phuong Ly, Andrei B. Imbs, Pham Quoc Long
Author affiliations

Authors

  • Tran Thi Hong Ha Institute of Natural Products Chemistry, VAST, Vietnam
  • Le Mai Huong Institute of Natural Products Chemistry, VAST, Vietnam
  • Le Huu Cuong Institute of Natural Products Chemistry, VAST, Vietnam
  • Nguyen Dinh Tuan Institute of Natural Products Chemistry, VAST, Vietnam
  • Hoang Kim Chi Institute of Natural Products Chemistry, VAST, Vietnam Graduate University of Science and Technology, VAST, Vietnam
  • Tran Thi Nhu Hang Institute of Natural Products Chemistry, VAST, Vietnam
  • Do Huu Nghi Institute of Natural Products Chemistry, VAST, Vietnam
  • Dang Thi Phuong Ly Institute of Natural Products Chemistry, VAST, Vietnam
  • Andrei B. Imbs Institute of Marine Biology, FEB RAS, Russia
  • Pham Quoc Long Institute of Natural Products Chemistry, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/19/3/14060

Keywords:

Antioxidant, antimicrobial, cytotoxicity, seagrass, seaweed, Vietnam Sea.

Abstract

Although seaweeds and seagrasses have been used for food and traditional medicine for centuries, merely a small amount of them is exploited and used. Positive biological activities of seaweed and seagrass products on humans, animals and plants have also been recorded for a long time. Vietnam is a tropical country with 3,260 km long coastline and about 350 species of seaweeds, including 60 widely used species. In this study, 57 seaweed and seagrass samples were extracted using CHCl3/MeOH solvent systems and their crude extracts were tested for selected biological actives, including antimicrobial, antioxidant activities and cytotoxicity. The results revealed that 13 out of 57 extracts (accounting for 24.07%) were cytotoxic to one of the two tested cancer cell lines (Hepatocellular carcinoma cell line Hep-G2 and human lung adenocarcinoma cell line LU-1), and 4 extracts (accounting for 7.4%) were cytotoxic to both cancer cell lines. In antimicrobial activity assay, 18 of all 57 extracts (accounting for 37.5%) were capable of inhibiting 1 to 2 test microorganisms and 16 extracts (accounting for 33.33%) inhibited at least 3 test microorganisms. There were solely 1 extract (accounting for 1.85%) of the 57 extracts performing antioxidant activity in DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Titlyanov, E. A., Titlyanova, T. V., and Pham, V. H., 2012. Stocks and the use of economic marine macrophytes of Vietnam. Russian Journal of Marine Biology, 38(4), 285–298.

Pal, A., Kamthania, M. C., and Kumar, A., 2014. Bioactive compounds and properties of seaweeds-a review. Open Access Library Journal, 1(4), 1–17.

D’Orazio, N., Gemello, E., Gammone, M., de Girolamo, M., Ficoneri, C., and Riccioni, G., 2012. Fucoxantin: A treasure from the sea. Marine drugs, 10(3), 604–616.

Papenbrock, J., 2012. Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special?. ISRN Botany 2012 (2012), Nr. 7, 2012(7), 103892. DOI: https://doi.org/10.5402/2012/103892.

Hua, K. F., Hsu, H. Y., Su, Y. C., Lin, I. F., Yang, S. S., Chen, Y. M., and Chao, L. K., 2006. Study on the antiinflammatory activity of methanol extract from seagrass Zostera japonica. Journal of agricultural and food chemistry, 54(2), 306–311.

Kannan, R. R. R., Arumugam, R., and Anantharaman, P., 2010. Antibacterial potential of three seagrasses against human pathogens. Asian Pacific Journal of Tropical Medicine, 3(11), 890-893.

Ismail, M. S. A. M., Ismail, M. F., Bohari, N., Jalani, N. F. M., Zamri, A. A., and Zain, Z. M., 2012. Antimicrobial and anticancer properties of leaf extracts of Seagrass Enhalus acoroides. International Journal of Undergraduate Studies, 1(1), 32–36.

Van Luong, C., Van Thao, N., Komatsub, T., Vea, N. D., and Tien, D. D., 2012. Status and threats on seagrass beds using GIS in Vietnam. In Proc. of SPIE Vol (Vol. 8525, pp. 852512-1).

Vanden, B. D., and Vlietinck, A. J., 1991. Screening methods for antibacterial and antiviral agents from higher plants. Methods in plant biochemistry, 6, 47–69.

Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., and Victica, D., 1991. New colorimetric cytotoxicity assay for anticancer agents. Eur J Cancer, 27, 1162–1168.

Lin, L. Z., Shieh, H. L., Angerhofer, C. K., Pezzuto, J. M., Cordell, G. A., Xue, L., Johnson, M. E., and Ruangrungsi, N., 1993. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Cyclea barbata. Journal of natural products, 56(1), 22–29.

Gorinstein, S., Martin-Belloso, O., Katrich, E., Lojek, A., Číž, M., Gligelmo-Miguel, N., Haruenkit, R., Park, Y. S., Jung, S. T., and Trakhtenberg, S., 2003. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. The Journal of nutritional biochemistry, 14(3), 154–159.

Folch, J., Lees, M., and Stanley, G. S., 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry, 226(1), 497–509.

Chanthini, A. B., Balasubramani, G., Ramkumar, R., Sowmiya, R., Balakumaran, M. D., Kalaichelvan, P. T., and Perumal, P., 2015. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R. Br.) Asch. & Magnus mediated silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 153, 145–152.

Girija, K., Hemalatha, A., and Anantharaman, P., 2013. In vitro Antiproliferative activity of Seagrass Halodule pinifolia (Miki) on MCF7 Human Breast Cancer Cell Line. Advances in Bioresearch, 4(4). 134–137.

Yeh, C. C., Yang, J. I., Lee, J. C., Tseng, C. N., Chan, Y. C., Hseu, Y. C., Tang, J. Y., Chuang, L. Y., Huang, H. W., Chang, F. R., and Chang, H. W., 2012. Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complementary and Alternative Medicine, 12(1), 142.

Chen, K. J., Tseng, C. K., Chang, F. R., Yang, J. I., Yeh, C. C., Chen, W. C., Wu, S. F., Chang, H. W., and Lee, J. C., 2013. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation. PloS one, 8(2), e57704.

Ashwini, S. and Shantaram, M., 2017. A study on the ethanolic extracts of red seaweed Gracilaria corticata (J.agardh) J. Agardh, to assess the antiproliferative activity and morphological characterization of apoptosis on HeLa cell lines. International Journal of Phytomedicine, 9(3), 436–442.

Dewi, M. K., Arsianti, A., Zagloel, C. R. Z., Aziza, Y. A. N., Kurniasari, K. D., Mandasari, B. K. D., Masita, R., Zulfa, F. R., Azizah, N. N., and Putrianingsih, R., 2018. In vitro evaluation of seaweed gracilaria verrucosa for cytotoxic activity against cervical HeLa cells. Pharmacognosy Journal, 10(5), 1007–1011.

De Almeida, C. L. F., Falcão, D. S., Lima, D. M., Gedson, R., Montenegro, D. A., Lira, N. S., De Athayde-Filho, P. F., Rodrigues, L. C., De Souza, M. D. F. V., José M. Barbosa-Filho, J. M., and Batista, L. M., 2011. Bioactivities from marine algae of the genus Gracilaria. International journal of molecular sciences, 12(7), 4550–4573.

Balasankar, T., and Pushparaj, A., 2014. Antimicrobial activity of red seaweed Gracilaria corticata against human pathogenic bacterial strains. World Journal of Pharmaceutical Sciences, 2(12), 1901–1904.

Prasad, M. P., Sushant, S., and Rindhe, G., 2012. Antibacterial activity of seaweed (Gracilaria species) extracts against human pathogens. Asian Journal of Biological and Life Sciences, 1(3), 219–222.

Kolanjinathan, K., Ganesh, P., Saranraj, P., and Sekar, D., 2013. Antimicrobial activity of Gracilaria folifera extracts against pathogenic microorganisms. Int J Curr Biochem Biotechnol, 2(1), 6–9.

Wisespongpand, P., Srisombat, T., Patarajinda, S., and Aryuttaka, C., 2005. Screening of seagrass extracts for antimicrobial activities. Kasetsart University, Thailand. 326 p.

Kannan, R. R. R., Arumugam, R., Iyapparaj, P., Thangaradjou, T., and Anantharaman, P., 2013. In vitro antibacterial, cytotoxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food chemistry, 136(3–4), 1484–1489.

Jeyapragash, D., Subhashini, P., Raja, S., Abirami, K., and Thangaradjou, T., 2016. Evaluation of In-vitro Antioxidant Activity of Seagrasses: Signals for Potential Alternate Source. Free Radicals and Antioxidants, 6(1), 77–89.

Yuvaraj, N., Kanmani, P., Satishkumar, R., Paari, A., Pattukumar, V., and Arul, V., 2012. Seagrass as a potential source of natural antioxidant and anti-inflammatory agents. Pharmaceutical biology, 50(4), 458–467.

Girija, K., Parthiban, C., Hemalatha, A., Saranya, C., and Anantharaman, P., 2013. Evaluation of antioxidant activities and preliminary phytochemical analysis of seagrasses Halodule pinifolia, Halophila ovalis and Syringodium isoetifolium. The J. Phytochem, 114, 181–187.

Kannan Rengasamy, R. R., Rajasekaran, A., Micheline, G. D., and Perumal, A., 2012. Antioxidant activity of seagrasses of the Mandapam coast, India. Pharmaceutical biology, 50(2), 182–187.

Abdullah, N. S., Muhamad, S., Omar, I. C., and Abdullah, H., 2012. Radical scavenging activity and total phenolic content of Gracilaria manilaensis extracts.

Francavilla, M., Franchi, M., Monteleone, M., and Caroppo, C., 2013. The red seaweed Gracilaria gracilis as a multi products source. Marine drugs, 11(10), 3754–3776.

Yangthong, M., Hutadilok-Towatana, N., and Phromkunthong, W., 2009. Antioxidant activities of four edible seaweeds from the southern coast of Thailand. Plant foods for human nutrition, 64(3), 218–223.

Yang, J. I., Yeh, C. C., Lee, J. C., Yi, S. C., Huang, H. W., Tseng, C. N., and Chang, H. W., 2012. Aqueous extracts of the edible Gracilaria tenuistipitata are protective against H2O2-induced DNA damage, growth inhibition, and cell cycle arrest. Molecules, 17(6), 7241–7254.

Downloads

Published

30-06-2019

How to Cite

Ha, T. T. H., Huong, L. M., Cuong, L. H., Tuan, N. D., Chi, H. K., Hang, T. T. N., Nghi, D. H., Ly, D. T. P., Imbs, A. B., & Long, P. Q. (2019). Evaluation of biological activities of some seaweed and seagrass species in the coastal area of Vietnam. Vietnam Journal of Marine Science and Technology, 19(3), 405–414. https://doi.org/10.15625/1859-3097/19/3/14060

Issue

Section

Articles

Most read articles by the same author(s)