Intracellular reactive oxygen species scavenging effect of fucosterol isolated from the brown alga Sargassum crassifolium in Vietnam

Hoang Kim Chi, Le Huu Cuong, Nguyen Thi Hong Van, Tran Thi Nhu Hang, Do Huu Nghi, Tran Mai Duc, Le Mai Huong, Tran Thi Hong Ha
Author affiliations

Authors

  • Hoang Kim Chi Institute of Natural Products Chemistry, VAST, Vietnam Graduate University of Science and Technology, VAST, Vietnam
  • Le Huu Cuong Institute of Natural Products Chemistry, VAST, Vietnam
  • Nguyen Thi Hong Van Institute of Natural Products Chemistry, VAST, Vietnam
  • Tran Thi Nhu Hang Institute of Natural Products Chemistry, VAST, Vietnam
  • Do Huu Nghi Institute of Natural Products Chemistry, VAST, Vietnam
  • Tran Mai Duc Nha Trang Institute of Technology Research and Application, VAST, Vietnam
  • Le Mai Huong Institute of Natural Products Chemistry, VAST, Vietnam
  • Tran Thi Hong Ha Institute of Natural Products Chemistry, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/20/3/15248

Keywords:

Sargassum crassifolium, alga, fucosterol, ROS, antioxidant, Hep-G2 cells.

Abstract

Sargassum is a widely distributed marine brown algal genus in Vietnam and has been considered a source of diverse bioactive metabolites. In this study, S. crassifolium collected from South Central region of Vietnam was chemically studied and bioactively evaluated. Fucosterol was isolated and identified from the methanolic extract of the alga by means of chemical fractionation and spectral analysis and showed no cytotoxic effect in Hep-G2 cells at the observed concentrations. In vitro assay for intracellular reactive oxygen species by dichlorofluorescein method revealed a potent scavenging effect of the isolated compound. Accordingly, the level of intracellular reactive oxygen species induced by hydrogen peroxide (H2O2) was reduced by 71.66% with the treatment of fucosterol at 10 µg.ml-1. The results indicated the ability of algal fucosterol in diffusing into cells and preventing the production of different ROS compounds and further suggested the therapeutic potential against diseases caused by oxidative stress of natural metabolites from S. crassifolium in Vietnam.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ministry of Natural Resources and Environment, 2018. Vietnam’s Second National Communication to the United Nations Framework Convention on Climate Change. https://unfccc.int/ resource/docs/natc/vnmnc02.pdf (accessed November 1, 2019). https://unfccc.int/ resource/docs/natc/vnmnc02.pdf (accessed November 1, 2019).">

Nagai, K., Kono, S., and Quang, D. X., 1998. Wave characteristics on the central coast of Vietnam in the South China Sea. Coastal Engineering Journal, 40(4), 347–366. https://doi.org/10.1142/S0578563498 000200. DOI: https://doi.org/10.1142/S0578563498000200 https://doi.org/10.1142/S0578563498 000200.">

Van Nguyen, T., Le, N. H., Lin, S. M., Steen, F., and De Clerck, O., 2013. Checklist of the marine macroalgae of Vietnam. Botanica Marina, 56(3), 207–227. https://doi.org/10.1515/bot-2013-0010. DOI: https://doi.org/10.1515/bot-2013-0010 https://doi.org/10.1515/bot-2013-0010.">

Mattio, L., and Payri, C. E., 2011. 190 years of Sargassum taxonomy, facing the advent of DNA phylogenies. The Botanical Review, 77(1), 31–70. DOI 10.1007/s12229-010-9060-x. DOI: https://doi.org/10.1007/s12229-010-9060-x

Blunt, J. W., Copp, B. R., Hu, W. P., Munro, M. H., Northcote, P. T., and Prinsep, M. R., 2008. Marine natural products. Natural Product Reports, 25(1), 35–94. DOI: 10.1039/B701534H. DOI: https://doi.org/10.1039/b701534h

Yende, S. R., Harle, U. N., and Chaugule, B. B., 2014. Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Reviews, 8(15), 1–7. DOI: 10.4103/0973-7847.125514. DOI: https://doi.org/10.4103/0973-7847.125514

Narayan, B., Miyashita, K., and Hosakawa, M., 2005. Comparative evaluation of fatty acid composition of different Sargassum (Fucales, Phaeophyta) species harvested from temperate and tropical waters. Journal of Aquatic Food Product Technology, 13(4), 53–70. https://doi.org/10.1300/J030v13n04_05. DOI: https://doi.org/10.1300/J030v13n04_05 https://doi.org/10.1300/J030v13n04_05.">

Hong, D. D., Hien, H. M., and Son, P. N., 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology, 19(6), 817–826. https://doi.org/10.1007/s10811-007-9228-x. DOI: https://doi.org/10.1007/s10811-007-9228-x https://doi.org/10.1007/s10811-007-9228-x.">

Thinh, P. D., Menshova, R. V., Ermakova, S. P., Anastyuk, S. D., Ly, B. M., and Zvyagintseva, T. N., 2013. Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassum mcclurei. Marine Drugs, 11(5), 1456-1476. https://doi.org/10.3390/md1105 1456. DOI: https://doi.org/10.3390/md11051456 https://doi.org/10.3390/md1105 1456.">

Cuong, H. D., Thuy, T. T. T., Huong, T. T., Ly, B. M., & Van, T. T. T. (2015). Structure and hypolipidaemic activity of fucoidan extracted from brown seaweed Sargassum henslowianum. Natural Product Research, 29(5), 411–415. https://doi.org/10.1080/14786419.2014.948436. DOI: https://doi.org/10.1080/14786419.2014.948436 https://doi.org/10.1080/14786419.2014.948436.">

Cuong, D. X., Boi, V. N., and Van, T. T. T., 2016. Effect of storage time on phlorotannin content and antioxidant activity of six Sargassum species from Nhatrang bay, Vietnam. Journal of applied phycology, 28(1), 567–572. DOI 10.1007/s10811-015-0600-y. DOI: https://doi.org/10.1007/s10811-015-0600-y

Bilan, M. I., Ustyuzhanina, N. E., Shashkov, A. S., Thanh, T. T. T., Bui, M. L., Van Tran, T. T., and Usov, A. I., 2017. Sulfated polysaccharides of the vietnamese brown alga Sargassum aquifolium (Fucales, Sargassaceae). Carbohydrate Research, 449, 23–31. https://doi.org/10.1016/j.carres.2017.06.016. DOI: https://doi.org/10.1016/j.carres.2017.06.016 https://doi.org/10.1016/j.carres.2017.06.016.">

Nakai, M., Kageyama, N., Nakahara, K., and Miki, W., 2006. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Marine Biotechnology, 8(4), 409–414. DOI: https://doi.org/10.1007/s10126-005-6168-9

Kim, S. H., Choi, D. S., Athukorala, Y., Jeon, Y. J., Senevirathne, M., and Cho, K. R., 2007. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. Preventive Nutrition and Food Science, 12(2), 65–73. DOI: https://doi.org/10.3746/jfn.2007.12.2.065

Hwang, P. A., Wu, C. H., Gau, S. Y., Chien, S. Y., and Hwang, D. F., 2010. Antioxidant and immune-stimulating activities of hot-water extract from seaweed Sargassum hemiphyllum. Journal of Marine Science and Technology, 18(1), 41–46. DOI: https://doi.org/10.51400/2709-6998.1863

Seo, Y., Park, K. E., and Nam, T. J., 2007. Isolation of a new chromene from the brown alga Sargassum thunbergii. Bulletin-Korean Chemical Society, 28(10), 1831–1833. DOI: https://doi.org/10.5012/bkcs.2007.28.10.1831

Lim, S. N., Cheung, P. C. K., Ooi, V. E. C., and Ang, P. O., 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50(13), 3862–3866. https://doi.org/10.1021/jf020096b. DOI: https://doi.org/10.1021/jf020096b https://doi.org/10.1021/jf020096b.">

Jung, M., Jang, K. H., Kim, B., Lee, B. H., Choi, B. W., Oh, K. B., and Shin, J., 2008. Meroditerpenoids from the brown alga Sargassum siliquastrum. Journal of Natural Products, 71(10), 1714–1719. https://doi.org/10.1021/np800321y. DOI: https://doi.org/10.1021/np800321y https://doi.org/10.1021/np800321y.">

Iwashima, M., Mori, J., Ting, X., Matsunaga, T., Hayashi, K., Shinoda, D., Saito, H., Sankawa, U., and Hayashi, T., 2005. Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biological and Pharmaceutical Bulletin, 28(2), 374–377. https://doi.org/10.1248/bpb.28.374. DOI: https://doi.org/10.1248/bpb.28.374 https://doi.org/10.1248/bpb.28.374.">

Mori, J., Iwashima, M., Wakasugi, H., Saito, H., Matsunaga, T., Ogasawara, M., Takahashi, S., Suzuki, H., and Hayashi, T., 2005. New plastoquinones isolated from the brown alga, Sargassum micracanthum. Chemical and Pharmaceutical Bulletin, 53(9), 1159–1163. https://doi.org/10.1248/ cpb.53.1159. DOI: https://doi.org/10.1248/cpb.53.1159 https://doi.org/10.1248/ cpb.53.1159.">

Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R., 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI: Journal of the National Cancer Institute, 82(13), 1107–1112. https://doi.org/10.1093/jnci/82.13.1107. DOI: https://doi.org/10.1093/jnci/82.13.1107 https://doi.org/10.1093/jnci/82.13.1107.">

Wang, H., and Joseph, J. A., 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine, 27(5–6), 612–616. https://doi.org/10.1016/S0891-5849(99)00 107-0. DOI: https://doi.org/10.1016/S0891-5849(99)00107-0 https://doi.org/10.1016/S0891-5849(99)00 107-0.">

Sohn, J. H., Han, K. L., Lee, S. H., and Hwang, J. K., 2005. Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biological and Pharmaceutical Bulletin, 28(6), 1083–1086. https://doi.org/10.1248/bpb.28.1083. DOI: https://doi.org/10.1248/bpb.28.1083 https://doi.org/10.1248/bpb.28.1083.">

Goad, L. H., and Akihisa, T., 1997. Analysis of Sterols, London, Blackie Academic & Professional, 168. Google Scholar| Crossref. DOI: https://doi.org/10.1007/978-94-009-1447-6

Sánchez‐Machado, D. I., López‐Hernández, J., Paseiro‐Losada, P., and López‐Cervantes, J., 2004. An HPLC method for the quantification of sterols in edible seaweeds. Biomedical Chromatography, 18(3), 183–190. https://doi.org/10.1002/bmc.316. DOI: https://doi.org/10.1002/bmc.316 https://doi.org/10.1002/bmc.316.">

Liu, X., Wang, C. Y., Shao, C. L., Wei, Y. X., Wang, B. G., Sun, L. L., Zheng, C.-J., and Guan, H. S., 2009. Chemical constituents from Sargassum pallidum (Turn.) C. Agardh. Biochemical Systematics and Ecology, 2(37), 127–129. DOI: 10.1016/j.bse.2009.01.009. DOI: https://doi.org/10.1016/j.bse.2009.01.009

Payghami, N., Jamili, S., Rustaiyan, A., Saeidnia, S., Nikan, M., and Gohari, A. R., 2015. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens. Pharmacognosy Research, 7(4), 314–321. Doi: 10.4103/0974-8490.167893. DOI: https://doi.org/10.4103/0974-8490.167893

Zhen, X. H., Quan, Y. C., Jiang, H. Y., Wen, Z. S., Qu, Y. L., and Guan, L. P., 2015. Fucosterol, a sterol extracted from Sargassum fusiforme, shows antidepressant and anticonvulsant effects. European Journal of Pharmacology, 768, 131–138. https://doi.org/10.1016/j.ejphar. 2015.10.041. DOI: https://doi.org/10.1016/j.ejphar.2015.10.041 https://doi.org/10.1016/j.ejphar. 2015.10.041.">

Fernando, I. S., Jayawardena, T. U., Kim, H. S., Lee, W. W., Vaas, A. P. J. P., De Silva, H. I. C., Abayaweera, G. S., Nanayakkara, C. M., Abeytunga, D. T. U., Lee, D.-S., and Jeon, Y. J., 2019. Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi DOI: https://doi.org/10.1016/j.envres.2019.02.016

(Sonder ex J. Agardh). Environmental Research, 172, 150–158. https://doi.org/ 10.1016/j.envres.2019.02.016. https://doi.org/ 10.1016/j.envres.2019.02.016.">

Moni, S. S., Alam, M. F., Makeen, H. A., Alhazmi, H. A., Sultan, M., Siddiqui, R., Jabeen, A., Sanobar, S., Alam, M. S., Rehman, Z. U., Elmobark, M. E., Madkhali, O., Haque, A., and Albratty, M., 2019. Solvent extraction, spectral analysis and antibacterial activity of the bioactive crystals of Sargassum aquifolium (Turner) C. Agardh from Red Sea. Natural Product Research, 1–5. https://doi.org/10.1080/ 14786419.2019.1645659. https://doi.org/10.1080/ 14786419.2019.1645659.">

Sheu, J. H., Wang, G. H., Sung, P. J., and Duh, C. Y., 1999. New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. Journal of Natural Products, 62(2), 224–227. https://doi.org/10.1021/np980233s. DOI: https://doi.org/10.1021/np980233s https://doi.org/10.1021/np980233s.">

Lee, S., Lee, Y. S., Jung, S. H., Kang, S. S., and Shin, K. H., 2003. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Archives of Pharmacal Research, 26(9), 719–722. https://doi.org/10.1007/BF02976680. DOI: https://doi.org/10.1007/BF02976680 https://doi.org/10.1007/BF02976680.">

Lee, Y. S., Shin, K. H., Kim, B. K., and Lee, S., 2004. Anti-Diabetic activities of fucosterol from Pelvetia siliquosa. Archives of Pharmacal Research, 27(11), 1120–1122. https://doi.org/10.1007/BF02975115 DOI: https://doi.org/10.1007/BF02975115 https://doi.org/10.1007/BF02975115">

Jung, H. A., Jin, S. E., Ahn, B. R., Lee, C. M., and Choi, J. S., 2013. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264. 7 macrophages. Food and Chemical Toxicology, 59, 199–206. https://doi.org/10.1016/j.fct.2013.05.061. DOI: https://doi.org/10.1016/j.fct.2013.05.061 https://doi.org/10.1016/j.fct.2013.05.061.">

Evans, W. C., 2009. Trease and evans’ pharmacognosy E-book. Elsevier Health Sciences.

Downloads

Published

30-09-2020

How to Cite

Chi, H. K., Cuong, L. H., Van, N. T. H., Hang, T. T. N., Nghi, D. H., Duc, T. M., Huong, L. M., & Ha, T. T. H. (2020). Intracellular reactive oxygen species scavenging effect of fucosterol isolated from the brown alga <i>Sargassum crassifolium</i> in Vietnam. Vietnam Journal of Marine Science and Technology, 20(3), 308–316. https://doi.org/10.15625/1859-3097/20/3/15248

Issue

Section

Articles

Most read articles by the same author(s)