CERTAIN PROPERTIES OF CALCIUM HYDROXYAPATITE FROM SKIPJACK TUNA BONE (Katsuwonus pelamis)

Le Ho Khanh Hy, Pham Xuan Ky, Dao Viet Ha, Nguyen Thu Hong, Phan Bao Vy, Doan Thi Thiet, Nguyen Phuong Anh
Author affiliations

Authors

  • Le Ho Khanh Hy Institute of Oceanography, VAST, Vietnam
  • Pham Xuan Ky Institute of Oceanography, VAST, Vietnam
  • Dao Viet Ha Institute of Oceanography, VAST, Vietnam
  • Nguyen Thu Hong Institute of Oceanography, VAST, Vietnam
  • Phan Bao Vy Institute of Oceanography, VAST, Vietnam
  • Doan Thi Thiet Institute of Oceanography, VAST, Vietnam
  • Nguyen Phuong Anh Institute of Oceanography, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/18/4A/13643

Keywords:

Bone, skipjack tuna bone, Katsuwonus pelamis, 600oC, 900oC, 1200oC, hydroxyapatite Ca10(PO4)6(OH)2, β-tricalcium phosphate Ca3(PO4)2.

Abstract

This paper is concerned with certain properties of calcium hydroxyapatite from skipjack tuna bone (Katsuwonus pelamis) which are by-products of fish export industry. Hydroxyapatite Ca10(PO4)6(OH)2 and β-tricalcium phosphate Ca3(PO4)2, the high-value compounds, have been successfully extracted from skipjack tuna bones. The bones were heated at different temperatures of 600oC, 900oC, 1200oC. While at 600oC hydroxyapatites were obtained with Ca/P ratio of 1.658, comparable to the value of 1.67 found in human bone; the hydroxyapatite crystals of average size of 0.25 µm were formed with the same size distribution. In case of heated bone samples at 900°C and 1200°C, the calcium formed were biphasic calcium phosphate composed of hydroxyapatite and β-tricalcium phosphate; the Ca/P ratio was between 1.660–1.665; the calcium crystals of more than
1 µm were highly porous and connected to each other in priority orientation of tube direction.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tang, P. F., Li, G., Wang, J. F., Zheng, Q. J., and Wang, Y., 2009. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 90(2), 886–893. DOI: https://doi.org/10.1002/jbm.b.31360

Staffa, G., Nataloni, A., Compagnone, C., and Servadei, F., 2007. Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochirurgica, 149(2), 161–170. DOI: https://doi.org/10.1007/s00701-006-1078-9

Hirata, A., Maruyama, Y., Onishi, K., Hayashi, A., Saze, M., and Okada, E., 2004. a Vascularized Artificial Bone Graft Using The Periosteal Flap And Porous Hydroxyapatite; Basic Research And Preliminary Clinical Application: s-iv-04. Wound Repair and Regeneration, 21(1), A4. DOI: https://doi.org/10.1111/j.1067-1927.2004.abstractl.x

Venkatesan, J., & Kim, S. K. (2010). Effect of temperature on isolation and characterization of hydroxyapatite from tuna (Thunnus obesus) bone. Materials, 3(10), 4761–4772. DOI: https://doi.org/10.3390/ma3104761

Venkatesan, J., Qian, Z. J., Ryu, B., Kumar, N. A., and Kim, S. K., 2011. Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydrate Polymers, 83(2), 569–577. DOI: https://doi.org/10.1016/j.carbpol.2010.08.019

Salman, S., Soundararajan, S., Safina, G., Satoh, I., and Danielsson, B., 2008. Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta, 77(2), 490–493. DOI: https://doi.org/10.1016/j.talanta.2008.04.003

Reichert, J., and Binner, J. G. P., 1996. An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. Journal of Materials Science, 31(5), 1231–1241. DOI: https://doi.org/10.1007/BF00353102

Kano, S., Yamazaki, A., Otsuka, R., Ohgaki, M., Akao, M., and Aoki, H., 1994. Application of hydroxyapatite-sol as drug carrier. Bio-medical Materials and Engineering, 4(4), 283–290. DOI: https://doi.org/10.3233/BME-1994-4404

Nieh, T. G., Choi, B. W., and Jankowski, A. F., 2000. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings (No. UCRL-JC-141229). Lawrence Livermore National Lab., CA (US).

Robinson, C., Connell, S., Kirkham, J., Shore, R., and Smith, A., 2004. Dental enamel-a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry, 14(14), 2242–2248. DOI: https://doi.org/10.1039/B401154F

Viswanath, B., Raghavan, R., Gurao, N. P., Ramamurty, U., and Ravishankar, N., 2008. Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis. Acta Biomaterialia, 4(5), 1448–1454. DOI: https://doi.org/10.1016/j.actbio.2008.02.031

Sanosh, K. P., Chu, M. C., Balakrishnan, A., Kim, T. N., and Cho, S. J., 2010. Sol-gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Current Applied Physics, 10(1), 68–71. DOI: https://doi.org/10.1016/j.cap.2009.04.014

Roy, D. M., and Linnehan, S. K., 1974. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 247(5438), 220–222. DOI: https://doi.org/10.1038/247220a0

White, E., and Shors, E. C., 1986. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dental Clinics of North America, 30(1), 49–67. DOI: https://doi.org/10.1016/S0011-8532(22)02094-8

Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F. N., and Ferreira, J. M. F., 2005. Scaffolds for bone restoration from cuttlefish. Bone, 37(6), 850–857. DOI: https://doi.org/10.1016/j.bone.2005.06.018

Rocha, J. H. G., Lemos, A. F., Kannan, S., Agathopoulos, S., and Ferreira, J. M. F., 2005. Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Journal of Materials Chemistry, 15(47), 5007–5011. DOI: https://doi.org/10.1039/b510122k

Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Kannan, S., Valerio, P., and Ferreira, J. M. F., 2006. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(1), 160–168. DOI: https://doi.org/10.1002/jbm.a.30566

Sarin, P., Lee, S. J., Apostolov, Z. D., and Kriven, W. M., 2011. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. Journal of the American Ceramic Society, 94(8), 2362–2370. DOI: https://doi.org/10.1111/j.1551-2916.2011.04404.x

Lemos, A. F., Rocha, J. H. G., Quaresma, S. S. F., Kannan, S., Oktar, F. N., Agathopoulos, S., and Ferreira, J. M. F., 2006. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society, 26(16), 3639–3646. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.12.011

Zhang, X., and Vecchio, K. S., 2006. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells. Materials Science and Engineering: C, 26(8), 1445–1450. DOI: https://doi.org/10.1016/j.msec.2005.08.007

Yang, Y., Yao, Q., Pu, X., Hou, Z., and Zhang, Q., 2011. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chemical Engineering Journal, 173(3), 837–845. DOI: https://doi.org/10.1016/j.cej.2011.07.029

Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., and Mann, S., 2003. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 142(3), 327–333. DOI: https://doi.org/10.1016/S1047-8477(03)00053-4

Mondal, S., Mahata, S., Kundu, S., and Mondal, B., 2010. Processing of natural resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 109(4), 234–239. DOI: https://doi.org/10.1179/174367613X13789812714425

Huang, Y. C., Hsiao, P. C., and Chai, H. J., 2011. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), 1825–1831. DOI: https://doi.org/10.1016/j.ceramint.2011.01.018

Ozawa, M., and Suzuki, S., 2002. Microstructural development of natural hydroxyapatite originated from fish‐bone waste through heat treatment. Journal of the American Ceramic Society, 85(5), 1315–1317. DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00268.x

Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., and León, B., 2012. Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478–486. DOI: https://doi.org/10.1016/j.msec.2011.11.021

Piccirillo, C., Silva, M. F., Pullar, R. C., da Cruz, I. B., Jorge, R., Pintado, M. M. E., and Castro, P. M., 2013. Extraction and characterisation of apatite-and tricalcium phosphate-based materials from cod fish bones. Materials Science and Engineering: C, 33(1), 103–110. DOI: https://doi.org/10.1016/j.msec.2012.08.014

Venkatesan, J., Lowe, B., Manivasagan, P., Kang, K. H., Chalisserry, E., Anil, S., ... and Kim, S. K., 2015. Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials, 8(8), 5426–5439. DOI: https://doi.org/10.3390/ma8085253

Đào Quốc Hương, Phan Thị Ngọc Bích, 2007. Tổng hợp bột hydroxyapatit kích thước nano bằng phương pháp kết tủa hoá học. Tạp chí Hoá học, 45(2), 147–151.

Vũ Duy Hiển, Đào Quốc Hương, Phan Thị Ngọc Bích, 2008. Nghiên cứu chế tạo gốm hydroxyapatit từ khung xốp tự nhiên của mai mực bằng phản ứng thuỷ nhiệt. Tạp chí Hoá học, 46(2A), 118–123.

Hien, V. D., Huong, D. Q., and Bich, P. T. N., 2010. Study of the formation of porous hydroxyapatite ceramics from corals via hydrothermal process. Vietnam Journal of Chemistry, 48(5), 591–596.

Đoàn Bộ, Bùi Thanh Hùng, Nguyễn Văn Hướng, 2015. Dự báo khai thác năm 2015 nguồn lợi cá ngừ vằn ở vùng biển xa bờ miền Trung. Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, 31(3S), 14–19.

Coelho, T. M., Nogueira, E. S., Steimacher, A., Medina, A. N., Weinand, W. R., Lima, W. M.,... and Bento, A. C., 2006. Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. Journal of applied physics, 100(9), 094312. DOI: https://doi.org/10.1063/1.2369647

Paz, A., Guadarrama, D., López, M., E González, J., Brizuela, N., and Aragón, J., 2012. A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Química Nova, 35(9), 1724–1727. DOI: https://doi.org/10.1590/S0100-40422012000900004

Ślósarczyk, A., Paszkiewicz, Z., and Paluszkiewicz, C., 2005. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 744, 657–661. DOI: https://doi.org/10.1016/j.molstruc.2004.11.078

Ji, G., Zhu, H., Jiang, X., Qi, C., and Zhang, X. M., 2009. Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders. Journal of Applied Polymer Science, 114(5), 3168–3176. DOI: https://doi.org/10.1002/app.30908

Berzina-Cimdina, L., and Borodajenko, N., 2012. Research of calcium phosphates using Fourier transform infrared spectroscopy. In Infrared Spectroscopy-Materials Science, Engineering and Technology. IntechOpen. DOI: https://doi.org/10.5772/36942

Tavares, D. D. S., Castro, L. D. O., Soares, G. D. D. A., Alves, G. G., and Granjeiro, J. M., 2013. Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. Journal of Applied Oral Science, 21(1), 37–42. DOI: https://doi.org/10.1590/1678-7757201302138

Anand, G., Pandey, J. K., and Rana, S. (Eds.), 2017. Nanotechnology for Energy and Water: Proceedings of the International Conference NEW-2017. Springer. DOI: https://doi.org/10.1007/978-3-319-63085-4

De Groot, K., 1983. Bioceramics of calcium phosphate. Ceramic of calcium phosphate: Preparation and properties, 100–114.

Muralithran, G., and Ramesh, S., 2000. The effects of sintering temperature on the properties of hydroxyapatite. Ceramics International, 26(2), 221–230. DOI: https://doi.org/10.1016/S0272-8842(99)00046-2

Downloads

Published

14-03-2019

How to Cite

Hy, L. H. K., Ky, P. X., Ha, D. V., Hong, N. T., Vy, P. B., Thiet, D. T., & Anh, N. P. (2019). CERTAIN PROPERTIES OF CALCIUM HYDROXYAPATITE FROM SKIPJACK TUNA BONE (Katsuwonus pelamis). Vietnam Journal of Marine Science and Technology, 18(4A), 151–163. https://doi.org/10.15625/1859-3097/18/4A/13643

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>