Metamaterials for Improving Efficiency of Magnetic Resonant Wireless Power Transfer Applications

Authors

  • Thanh Son Pham Vietnam Academy of Science and Technology
  • Thao Duy Nguyen Vietnam Academy of Science and Technology
  • Dinh Lam Vu Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/0868-3166/16049

Keywords:

metamaterial, magnetic resonant, wireless power transfer

Abstract

In this article, we investigate a compact metamaterial structure for enhancing a magnetic resonant wireless power transfer (WPT) system operated at 6.5 MHz. A thin magnetic metamaterial (MM) slab placed between the transmitter (Tx) and receiver (Rx) coil can improve WPT efficiency. The metamaterial unit cell is designed by a ten-turn spiral resonator (10T-SR) loaded with an external capacitor. The resonant frequency of MM unit cells can be easily controlled by changing the capacitor value. By using the optimization approach, we achieve a significant WPT efficiency improvement at a mid-range distance. The results showed an enhancement of the magnetic field in the WPT system when MM slab was present. This demonstrates the ability to amplify the evanescent wave of MM slab, thereby improving the WPT efficiency. The transmission coefficients of WPT system at 60 cm increased from 0.5 to 0.76 with MM slab, which corresponds to a 46% improvement.

Downloads

Download data is not yet available.

References

L. I. Anderson, Nikola Tesla on his work with alternating currents and their application to wireless telegraphy, telephony and transmission of power. Twenty First Century Books, 2002.

X. Dang, P. Jayathurathnage, S. A. Tretyakov, and C. R. Simovski, IEEE Access 8 (2020) 119940. DOI: https://doi.org/10.1109/ACCESS.2020.3005657

T. Arai and H. Hirayama, Energies 13 (2020) 1581. DOI: https://doi.org/10.3390/en13071581

M. Song, K. Baryshnikova, A. Markvart, P. Belov, E. Nenasheva, C. Simovski, and P. Kapitanova, Phys. Rev. Appl. 11 (2019) 054046. DOI: https://doi.org/10.1103/PhysRevApplied.11.054046

R. Hasaba, K. Okamoto, S. Kawata, K. Eguchi, and Y. Koyanagi, IEEE Trans. Microw. Theory Tech. 67 (2019) 4505. DOI: https://doi.org/10.1109/TMTT.2019.2928291

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, Science 317 (2007) 83. DOI: https://doi.org/10.1126/science.1143254

T. P. Duong and J. W. Lee, IEEE Microw. Wirel. Components Lett. 21 (2011) 442. DOI: https://doi.org/10.1109/LMWC.2011.2160163

N. Y. Kim, K. Y. Kim, and C. W. Kim, Microw. Opt. Technol. Lett. 54 (2012) 1423. DOI: https://doi.org/10.1002/mop.26858

A. P. Sample, B. H. Waters, S. T. Wisdom, and J. R. Smith, Proc. IEEE, 101 (2013) 1343. DOI: https://doi.org/10.1109/JPROC.2013.2252453

J. W. Kim, H. C. Son, K. H. Kim, and Y. J. Park, IEEE Antennas Wirel. Propag. Lett. 10 (2011) 389. DOI: https://doi.org/10.1109/LAWP.2011.2150192

T. S. Pham, H. N. Bui, and J. W. Lee, J. Magn. Magn. Mater. 485 (2019) 126. DOI: https://doi.org/10.1016/j.jmmm.2019.04.034

J. Garnica, R. A. Chinga, and J. Lin, Proc. IEEE, 101 (2013) 1321. DOI: https://doi.org/10.1109/JPROC.2013.2251411

M. Xia and S. Aïssa, IEEE Trans. Signal Process. 63 (2015) 2835. DOI: https://doi.org/10.1109/TSP.2015.2417497

A. M. Jawad, R. Nordin, S. K. Gharghan, H. M. Jawad, and M. Ismail, Energies, 10 (2017) 1022. DOI: https://doi.org/10.3390/en10071022

F. Van Der Pijl, P. Bauer, and M. Castilla, IEEE Trans. Ind. Electron. 60 (2013) 382. DOI: https://doi.org/10.1109/TIE.2011.2163917

H. H. Lee, S. H. Kang, and C. W. Jung, IEEE Microw. Wirel. Components Lett. 28 (2018) 269. DOI: https://doi.org/10.1109/LMWC.2018.2802719

S. Assawaworrarit, X. Yu, and S. Fan, Nature 546 (2017) 387. DOI: https://doi.org/10.1038/nature22404

S. Y. R. Hui, W. Zhong, and C. K. Lee, IEEE Trans. Power Electron., 29 (2014) 4500. DOI: https://doi.org/10.1109/TPEL.2013.2249670

W. J. Padilla, D. N. Basov, and D. R. Smith, Mater. Today, 9 (2006) 28. DOI: https://doi.org/10.1016/S1369-7021(06)71573-5

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305 (2004) 847. DOI: https://doi.org/10.1126/science.1098999

C. M. Soukoulis and M. Wegener, Nat. Photonics 5 (2011) 523. DOI: https://doi.org/10.1038/nphoton.2011.154

S. A. Cummer, J. Christensen, and A. Alù, Nat. Rev. Mater. 1 (2016) 16001. DOI: https://doi.org/10.1038/natrevmats.2016.1

A. L. A. K. Ranaweera, T. S. Pham, H. N. Bui, V. Ngo, and J. W. Lee, Sci. Rep. 9 (2019) 11735. DOI: https://doi.org/10.1038/s41598-019-48253-7

A. Radkovskaya, P. Petrov, S. Kiriushechkina, A. Satskiy, M. Ivanyukovich, A. Vakulenko, V. Prudnikov, O. Kotelnikova, A. Korolev, and P. Zakharov, J. Magn. Magn. Mater. 459 (2018) 187. DOI: https://doi.org/10.1016/j.jmmm.2017.11.031

H. Nguyen Bui, T. Son Pham, J. S. Kim, and J. W. Lee, J. Magn. Magn. Mater. 494 (2020) 165778. DOI: https://doi.org/10.1016/j.jmmm.2019.165778

T. S. Pham, B. X. Khuyen, B. S. Tung, T. T. Hoang, V. D. Pham, Q. M. Ngo, and V. D. Lam, J. Electron. Mater. 50 (2020) 443. DOI: https://doi.org/10.1007/s11664-020-08586-w

T. S. Pham, A. K. Ranaweera, V. D. Lam, and J. W. Lee, Appl. Phys. Express 9 (2016) 044101. DOI: https://doi.org/10.7567/APEX.9.044101

W. Yang, S. Ho, and W. Fu, IEEE Access 8 (2020) 82700. DOI: https://doi.org/10.1109/ACCESS.2020.2990964

B. Wang, K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, Appl. Phys. Lett. 98 (2011) 254101. DOI: https://doi.org/10.1063/1.3601927

A. L. A. K. Ranaweera, T. P. Duong, and J. W. Lee, J. Appl. Phys. 116 (2014) 043914. DOI: https://doi.org/10.1063/1.4891715

Published

30-09-2021

How to Cite

Pham, T. S., Nguyen, T. D., & Vu, D. L. (2021). Metamaterials for Improving Efficiency of Magnetic Resonant Wireless Power Transfer Applications. Communications in Physics, 32(1). https://doi.org/10.15625/0868-3166/16049

Issue

Section

Papers