Vol. 32 No. 1 (2022)

Metamaterials for Improving Efficiency of Magnetic Resonant Wireless Power Transfer Applications

Thanh Son Pham
Vietnam Academy of Science and Technology
Thao Duy Nguyen
Vietnam Academy of Science and Technology
Dinh Lam Vu
Vietnam Academy of Science and Technology

Published 15-01-2022


  • metamaterial,
  • magnetic resonant,
  • wireless power transfer

How to Cite

Pham, T. S., Nguyen, T. D., & Vu, D. L. (2022). Metamaterials for Improving Efficiency of Magnetic Resonant Wireless Power Transfer Applications. Communications in Physics, 32(1), 39. https://doi.org/10.15625/0868-3166/16049


In this article, we investigate a compact metamaterial structure for enhancing a magnetic resonant wireless power transfer (WPT) system operated at 6.5 MHz. A thin magnetic metamaterial (MM) slab placed between the transmitter (Tx) and receiver (Rx) coil can improve WPT efficiency. The metamaterial unit cell is designed by a ten-turn spiral resonator (10T-SR) loaded with an external capacitor. The resonant frequency of MM unit cells can be easily controlled by changing the capacitor value. By using the optimization approach, we achieve a significant WPT efficiency improvement at a mid-range distance. The results showed an enhancement of the magnetic field in the WPT system when MM slab was present. This demonstrates the ability to amplify the evanescent wave of MM slab, thereby improving the WPT efficiency. The transmission coefficients of WPT system at 60 cm increased from 0.5 to 0.76 with MM slab, which corresponds to a 46% improvement.


Download data is not yet available.


Metrics Loading ...


  1. L. I. Anderson, Nikola Tesla on his work with alternating currents and their application to wireless telegraphy, telephony and transmission of power. Twenty First Century Books, 2002.
  2. X. Dang, P. Jayathurathnage, S. A. Tretyakov and C. R. Simovski, Self-tuning multi-transmitter wireless power transfer to freely positioned receivers, IEEE Access 8 (2020) 119940. DOI: https://doi.org/10.1109/ACCESS.2020.3005657
  3. T. Arai and H. Hirayama, Folded spiral resonator with double-layered structure for near-field wireless power transfer, Energies 13 (2020) 1581. DOI: https://doi.org/10.3390/en13071581
  4. M. Song, K. Baryshnikova, A. Markvart, P. Belov, E. Nenasheva, C. Simovski, and P. Kapitanova, Smart table based on a metasurface for wireless power transfer, Phys. Rev. Appl. 11 (2019) 054046. DOI: https://doi.org/10.1103/PhysRevApplied.11.054046
  5. R. Hasaba, K. Okamoto, S. Kawata, K. Eguchi, and Y. Koyanagi, Magnetic resonance wireless power transfer over 10 m with multiple coils immersed in seawater, IEEE Trans. Microw. Theory Tech. 67 (2019) 4505. DOI: https://doi.org/10.1109/TMTT.2019.2928291
  6. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljaˇci´c, Wireless power transfer via strongly coupled magnetic resonances, Science 317 (2007) 83. DOI: https://doi.org/10.1126/science.1143254
  7. T. P. Duong and J. W. Lee, Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method, IEEE Microw. Wirel. Components Lett. 21 (2011) 442. DOI: https://doi.org/10.1109/LMWC.2011.2160163
  8. N. Y. Kim, K. Y. Kim and C. W. Kim, Automated frequency tracking system for efficient mid-range magnetic resonance wireless power transfer, Microw. Opt. Technol. Lett. 54 (2012) 1423. DOI: https://doi.org/10.1002/mop.26858
  9. A. P. Sample, B. H.Waters, S. T.Wisdom, and J. R. Smith, Enabling seamless wireless power delivery in dynamic environments, Proc. IEEE, 101 (2013) 1343. DOI: https://doi.org/10.1109/JPROC.2013.2252453
  10. J. W. Kim, H. C. Son, K. H. Kim, and Y. J. Park, Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil, IEEE Antennas Wirel. Propag. Lett. 10 (2011) 389. DOI: https://doi.org/10.1109/LAWP.2011.2150192
  11. T. S. Pham, H. N. Bui and J. W. Lee, Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials, J. Magn. Magn. Mater. 485 (2019) 126. DOI: https://doi.org/10.1016/j.jmmm.2019.04.034
  12. J. Garnica, R. A. Chinga and J. Lin, Wireless power transmission: from far field to near field, Proc. IEEE, 101 (2013) 1321. DOI: https://doi.org/10.1109/JPROC.2013.2251411
  13. M. Xia and S. A¨ıssa, On the efficiency of far-field wireless power transfer, IEEE Trans. Signal Process. 63 (2015) 2835. DOI: https://doi.org/10.1109/TSP.2015.2417497
  14. A. M. Jawad, R. Nordin, S. K. Gharghan, H. M. Jawad and M. Ismail, Opportunities and challenges for near-field wireless power transfer: a review, Energies, 10 (2017) 1022. DOI: https://doi.org/10.3390/en10071022
  15. F. Van Der Pijl, P. Bauer and M. Castilla, Control method for wireless inductive energy transfer systems with relatively large air gap, IEEE Trans. Ind. Electron. 60 (2013) 382. DOI: https://doi.org/10.1109/TIE.2011.2163917
  16. H. H. Lee, S. H. Kang and C.W. Jung, MR-WPT with reconfigurable resonator and ground for laptop application, IEEE Microw. Wirel. Components Lett. 28 (2018) 269. DOI: https://doi.org/10.1109/LMWC.2018.2802719
  17. S. Assawaworrarit, X. Yu and S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit, Nature 546 (2017) 387. DOI: https://doi.org/10.1038/nature22404
  18. S. Y. R. Hui, W. Zhong and C. K. Lee, A critical review of recent progress in mid-range wireless power transfer, IEEE Trans. Power Electron., 29 (2014) 4500. DOI: https://doi.org/10.1109/TPEL.2013.2249670
  19. W. J. Padilla, D. N. Basov and D. R. Smith, Negative refractive index metamaterials, Mater. Today, 9 (2006) 28. DOI: https://doi.org/10.1016/S1369-7021(06)71573-5
  20. J. B. Pendry, L. Mart´ın-Moreno and F. J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces, Science 305 (2004) 847. DOI: https://doi.org/10.1126/science.1098999
  21. C. M. Soukoulis and M. Wegener, Past achievements and future challenges in the development of threedimensional photonic metamaterials, Nat. Photonics 5 (2011) 523. DOI: https://doi.org/10.1038/nphoton.2011.154
  22. S. A. Cummer, J. Christensen and A. Al`u, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1 (2016) 16001. DOI: https://doi.org/10.1038/natrevmats.2016.1
  23. A. L. A. K. Ranaweera, T. S. Pham, H. N. Bui, V. Ngo and J. W. Lee, An active metasurface for field-localizing wireless power transfer using dynamically reconfigurable cavities, Sci. Rep. 9 (2019) 11735. DOI: https://doi.org/10.1038/s41598-019-48253-7
  24. A. Radkovskaya, P. Petrov, S. Kiriushechkina, A. Satskiy, M. Ivanyukovich, A. Vakulenko, V. Prudnikov, O. Kotelnikova, A. Korolev and P. Zakharov, Magnetic metamaterials: Coupling and permeability, J. Magn. Magn. Mater. 459 (2018) 187. DOI: https://doi.org/10.1016/j.jmmm.2017.11.031
  25. H. Nguyen Bui, T. Son Pham, J. S. Kim and J. W. Lee, Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot, J. Magn. Magn. Mater. 494 (2020) 165778. DOI: https://doi.org/10.1016/j.jmmm.2019.165778
  26. T. S. Pham, B. X. Khuyen, B. S. Tung, T. T. Hoang, V. D. Pham, Q. M. Ngo and V. D. Lam, Enhanced efficiency of asymmetric wireless power transmission using defects in 2D magnetic metamaterials, tJ. Electron. Mater. 50 (2021) 443. DOI: https://doi.org/10.1007/s11664-020-08586-w
  27. T. S. Pham, A. K. Ranaweera, V. D. Lam and J. W. Lee, Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity, Appl. Phys. Express 9 (2016) 044101. DOI: https://doi.org/10.7567/APEX.9.044101
  28. W. Yang, S. Ho and W. Fu, Numerical and experimental study on design optimization of hybrid metamaterial slab for wireless power transmission, IEEE Access 8 (2020) 82700. DOI: https://doi.org/10.1109/ACCESS.2020.2990964
  29. B.Wang, K. H. Teo, T. Nishino,W. Yerazunis, J. Barnwell and J. Zhang, Experiments on wireless power transfer with metamaterials, Appl. Phys. Lett. 98 (2011) 254101. DOI: https://doi.org/10.1063/1.3601927
  30. A. L. A. K. Ranaweera, T. P. Duong and J.W. Lee, Experimental investigation of compact metamaterial for high efficiency mid-range wireless power transfer applications, J. Appl. Phys. 116 (2014) 043914. DOI: https://doi.org/10.1063/1.4891715