Vol. 30 No. 4 (2020)

Experimental Verification of a TH\(\text{z}\) Multi-band Metamaterial Absorber

Cover Vol 30 No 4 December 2020

Published 20-10-2020


  • metamaterial absorbers,
  • multi-band,
  • THz frequencies

How to Cite

Tran, V. H., Bui, X. K., Vu, D. L., Bui, S. T., Le, T. H. H., & Nguyen, T. T. (2020). Experimental Verification of a TH\(\text{z}\) Multi-band Metamaterial Absorber. Communications in Physics, 30(4), 311. https://doi.org/10.15625/0868-3166/30/4/15081


Multi-band metamaterial absorbers have been of great interest owing to their potentials for a wide range of communicating, sensing, imaging, and energy harvesting applications. In this work, we experimentally investigate a four-band metamaterial absorber operating at THz frequencies. The metamaterials are fabricated using the maskless UV photolithography and e-beam evaporation techniques. The absorption spectra of the proposed absorber are measured using the micro-Fourier transformed infrared spectroscopy. It was demonstrated that multi-band absorption behavior originates from different individual metamaterial resonators. The thickness of the dielectric spacer plays a key role in optimizing the absorption performance, in line with the predicted results on single-band THz absorbers.


Download data is not yet available.


  1. [1] Carlo Sirtori, Nature 417 (2002) 132.
  2. [2] Gwyn P Williams, Rep. Prog. Phys. 69 (2006) 301.
  3. [3] W. Xu, L. Xie, and Y. Ying, Nanoscale 9 (2017) 13864.
  4. [4] N. T. Tung, Y. P. Lee, and V. D. Lam, Opt. Rev. 16 (2009) 578.
  5. [5] N. T. Tung, T. X. Hoai, V. D. Lam, and Y. P. Lee, Comput. Mat. Sci. 49 (2010) 284.
  6. [6] N. T. Tung and T. Tanaka, Photon. Nanostruct.: Fund. Appl. 28 (2018) 100.
  7. [7] M. Lapke, T. Mussenbrock, R. P. Brinkmann, C. Scharwitz, M. Boke and J. Winter, Appl. Phys. Lett. 90 (2007)
  8. [8] J. Huo, L. Wang and H. Yu, J. Mater. Sci. 44 (2009) 3917.
  9. [9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, Phys. Rev. Lett. 100 (2008) 207402.
  10. [10] A. Ishikawa and T. Tanaka, Sci. Reports 5 (2015) 12570.
  11. [11] C. M. Watts, X. Liu, W. J. Padilla, Adv. Mat. 24 (2012) OP98.
  12. [12] Li Huang and Hou-Tong Chen, Terahertz Sci. Technol. 6 (2013) 26.
  13. [13] N. T. Hien, B. S. Tung, N. T. Tuan, N. T. Tung, Y. P. Lee, N. M. An and V. D. Lam, Adv. Nat. Sci.: Nanosci.
  14. Nanotech. 5 (2014) 025013.
  15. [14] D. H. Luu, N. V. Cuong, L. D. Hai, N. H. Tung, T. M. Cuong, L. D. Tuyen and V. D. Lam, J. Nonlinear Opt.
  16. Phys. Mater. 26 (2017) 1750036.
  17. [15] T. M. Cuong, L. D. Hai, P. V. Hai, D. H. Tung, L. D. Tuyen, D. H. Luu and V. D. Lam, Sci. Rep. 8 (2018) 9523.
  18. [16] B. X. Wang, Y. H. He, P. C. Lou and W. H. Xing, Nanoscale Adv. 2 (2020) 763.
  19. [17] T. V. Huynh, B. X. Khuyen, B. S. Tung, S. T. Ngo, V. D. Lam, and N. T. Tung, Comput. Mat. Sci. 166 (2019)
  20. [18] U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, APL Mater. 7 (2019) 071102.
  21. [19] P. T. Trang, B. H. Nguyen, D. H. Tiep, L. M. Thuy, V. D. Lam, and N. T. Tung, J. Elec. Mater. 45 (2016) 2547.
  22. [20] B. S. Tung, N. V. Dung, B. X. Khuyen, N. T. Tung, P. Lievens, Y. P. Lee, and V. D. Lam, J. Opt. 15 (2013)
  23. [21] N. T. Hien, L. N. Le, P. T. Trang, B. S. Tung, N. D. Viet, P. T. Duyen, N. M. Thang, D. T. Viet, Y. P. Lee, V. D.
  24. Lam, and N. T. Tung, Comp. Mat. Sci. 103 (2015) 189.
  25. [22] L. N. Le, N. M. Thang, L. M. Thuy and N. T. Tung, Opt. Comm. 383 (2016) 244.
  26. [23] C. Z. Tan, J. Non-Cryst. Solids 223 (1998) 158.
  27. [24] V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang and Y. P. Lee, J. Phys. D: Appl. Phys. 42 (2009)
  28. [25] N. T. Tung, V. D. Lam, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, Photon. Nanostruct.: Fund. Appl. 7
  29. (2009) 206.