Vol. 31 No. 2 (2021)

Simulation of Angle-insensitive Microwave Metamaterial Absorbers Operating at Transmission Mode

Published 06-01-2021


  • perfect absorbers,
  • metamaterials,
  • transmission mode

How to Cite

Tran, V. H., Vu, D. L., & Nguyen, T. T. (2021). Simulation of Angle-insensitive Microwave Metamaterial Absorbers Operating at Transmission Mode. Communications in Physics, 31(2), 211. https://doi.org/10.15625/0868-3166/15382


Metamaterial absorbers with the resonator/dielectric/metallic-mirror conventional design are often angle-dependent and completely reflective outside the absorption band. Herein we have proposed a novel solution to achieve an angle-insensitive bidirectional absorber operating at transmission mode using a simple metamaterials system. The proposed system is composed of two symmetric disk-pair layers, called the disk-pair dimer, that exhibited two identical but coupled magnetic resonances at the same frequency. This unique design allows to absorb the electromagnetic energy at the transmission mode, which is rarely achieved in the conventional modes. By optimizing the coupling strength between two disk-pair layers, a total absorptivity could be enhanced up to 90%.


Download data is not yet available.


  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Perfect Metamaterial Absorber, Phys. Rev. Lett. 100, 207402 (2008)
  2. Y. Liu, S. Gu, C. Luo and X. Zhao, Ultra-thin broadband metamaterial absorber, Appl. Phys. A 108 19–24 (2012)
  3. D. T. Viet, N. V. Van, V. D. Lam, and N. T. Tung, Isotropic metamaterial absorber using cut-wire-pair structures, Applied Physics Express 8, 032001 (2015)
  4. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107(4), 045901 (2011).
  5. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging, Phys. Rev. B 79(12), 125104 (2009).
  6. H. Wang and L. Wang, Perfect selective metamaterial solar absorbers, Opt. Express 21(S6), 1078–1093 (2013).
  7. D. T. Viet, B. S. Tung, L. V. Quynh, N. T. Hien, N. T. Tuan, N. T. Tung, Y. P. Lee and V. D. Lam, Design, fabrication and characterization of a perfect absorber using simple cut-wire metamaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology 3, 045014 (2012).
  8. D.T.Viet, N.T.Hien, P.V.Tuong, N.QMinh, P.T.Trang, L.N.Le, and V.D.Lam, Perfect absorber metamaterials: Peak, multi-peak and broadband absorption, Optics Communications 322, 209–13 (2014)
  9. N. T. Tung and T. Tanaka, Characterizations of an infrared polarization-insensitive metamaterial perfect absorber and its potential in sensing applications, Photonics and Nanostructures – Fundamentals and Applications 28 100–105 (2018).
  10. Han Xiong, Ming-Chun Tang, and Jing-Song Hong, Analysis of single-layer metamaterial absorber with reflection theory, Journal of Applied Physics 117, 154906 (2015)
  11. Y.J. Kim, J.S. Hwang, Y.J. Yoo, B.X. Khuyen, X. Chen, Y.P. Lee, Triple-band metamaterial absorber based on single resonator, Curr. Appl. Phys 17, 1260 (2017)
  12. Xiaoyong He, Tunable terahertz graphene metamaterials, CARBON 82, 229 –237 (2015).
  13. W. Wang, K. Wang, Z. Yang and J. Liu, Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing, J. Phys. D: Appl. Phys 50 135108 (2017)
  14. Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S, Conformal dualband near-perfectly absorbing mid-infrared metamaterial coating, ACS Nano 5(6), 4641–4647 (2011)
  15. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, S.I. Bozhevolnyi, Broadband near-infrared metamaterial absorbers utilizing highly lossy metals, Sci. Rep 6, 39445 (2016)
  16. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial, Opt. Express 26(5), 5686–5693 (2018).
  17. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, Q. Li, Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals, Appl. Phys. Lett 110, 101101 (2017)
  18. B.X. Khuyen, B.S. Tung, Y.J. Yoo, Y.J. Kim, V.D. Lam, J.G. Yang, Y.P. Lee, Ultrathin metamaterial-based perfect absorbers for VHF and THz bands, Curr. Appl. Phys 16, 1009 (2016)
  19. B.S. Tung, B.X. Khuyen, Y.J. Kim, V.D. Lam, K.W. Kim, Y.P. Lee, Polarization-independent, wide-incident-angle and dual-band per-fect absorption, based on nearfield coupling in a symmetric metamaterial, Sci. Rep 7, 11507 (2017)
  20. Son Tung Bui, Van Dung Nguyen, Xuan Khuyen Bui, Thanh Tung Nguyen, Peter Lievens, YoungPak Lee and Dinh Lam Vu, Thermally tunable magnetic metamaterials at THz frequencies J. Opt 15, 075101 (2013)
  21. L.D. Hai, V.D. Qui, N.H. Tung, T.V. Huynh, N.D. Dung, N.T. Binh, L.D. Tuyen, V.D. Lam, Conductive polymer for ultra-broadband, wide-angle, and polarizationinsensitive metamaterial perfect absorber, Opt. Express 26, 33253 (2018)
  22. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows, Scientific reports 4, 6128, (2014)
  23. D. T. Anh, D. T. Viet, P. T. Trang, N. M. Thang, H. Q. Quy, N. V. Hieu, V. D.Lam, N. T. Tung, Taming electromagnetic metamaterials for isotropic perfect absorbers, AIP. Adv 5, 077119 (2015)
  24. http://www.cst.com for CST of America, Inc, 492 Old Connecticut Path, Suite 505 Framingham, MA 01701, USA.
  25. Xudong Chen, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco, Jr., and Jin Au Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E 70, 016608 (2004)
  26. E. Prodan, C. Radloff, N. J. Halas, and P. A. Nordlander, A Hybridization Model for the Plasmon Response of Complex Nanostructures, Science 302, 419 (2003)
  27. V. T. T. Thuy, D. T. Viet, N. V. Hieu, Y. P. Lee, V. D. Lam, and N. T. Tung, Triple negative permeability band in plasmon-hybridized cut-wire-pair metamaterials, Opt. Commun 283, 4303 (2010)
  28. B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, Controlling plasmon hybridization for negative refraction metamaterials, Phys. Rev. B 79, 075121 (2009)
  29. N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials, Appl. Phys. Express 5, 112001 (2012)
  30. N. T. Tung, B. S. Tung, E. Janssens, P. Lievens, and V. D. Lam, Broadband negative permeability using hybridized metamaterials: Characterization, multiple hybridization, and terahertz response, Journal of Applied Physics 116, 083104 (2014)