Vol. 28 No. 3 (2018)

High-Order Angle and Polarization Resolved Reflection of Artificial Opal Photonic Crystal

Dac Tuyen Le
Hanoi University of Mining and Geology
Dinh Lam Vu
Institute of Materials Science, Vietnam Academy of Science and Technology
Cover 1, CIP Vol. 28 No. 3 (2018)

Published 14-11-2018


  • Opal,
  • photonic crystals,
  • reflection,
  • polarization,
  • band structure

How to Cite

Le, D. T., & Vu, D. L. (2018). High-Order Angle and Polarization Resolved Reflection of Artificial Opal Photonic Crystal. Communications in Physics, 28(3), 247. https://doi.org/10.15625/0868-3166/28/3/10580


We present angle resolved reflection measurements showing the polarization dependence of photonic band gap in artificial opal photonic crystals. The SiO2 opals were prepared using thermal-assisted cell method. The observation of well-defined diffraction pattern indicates the samples with high quality. The reflection measurements were analyzed in the high energy region up to a/l = 1.6. It is shown that the diffraction peaks depend on s- and p-polarized light illumination. The polarization anisotropy effect due to symmetric properties of opal structure. The experiment results agree fairly well with calculated photonic band structure and are also discussed with predictions based on group theory. Angular reflection has implications in polarized light scattering in plasmonic structures and metamaterials and is also useful in applications like nano scale polarization splitters and lasers.


Download data is not yet available.


  1. C. López, Adv. Mater. 15 (2003) 1679-1704.
  2. K. Sakoda, Optical Properties of Photonic Crystals, Springer, New York, 2004.
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, Princeton University Press, Princeton, 2008.
  4. S. Furumi, H. Fudouzi, and T. Sawada, Laser & Photon. Rev. 4 (2010) 205-220.
  5. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, Phys. Rev. B 71 (2005) 016615.
  6. L. A. Dorado and R. A. Depine, Phys. Rev. B 79 (2009) 045124.
  7. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, and E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina and N. I. Silvanovich, and S. M. Samoilovich, Phys. Rev. E 55 (1997) 7916.
  8. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares- Martinez and C. Jouanin, Phys. Rev. E 63 (2001) 056603.
  9. L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan and C. C. Hsu, J. Exp. Nanosci. 7 (2012) 198-204.
  10. A. Avoine, P. N. Hong, H. Frederich, J. M. Frigerio, L. Coolen, C. Schwob, P. T. Nga, B. Gallas and A. Maitre, Phys. Rev. B 86 (2012) 165432.
  11. L. A. Dorado, R. A. Depine and H. Míguez, Phys. Rev. B 75 (2007) 241101(R).
  12. J. F. Galisteo-López, F. López-Tejeira, S. Rubio, C. López, J. Sánchez-Dehesa, Appl. Phys. Lett. 82 (2003) 4068-4070.
  13. A. V. Baryshev, A. B. Khanikaev, H. Uchida, M. Inoue and M. F. Limonov, Phys. Rev. B 73 (2006) 033103.
  14. A. V. Baryshev, A. B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue, Phys. Rev. B 76 (2007) 014305.
  15. S. G. Romanov, Phys. Solid State 52 (2010) 844.
  16. Priya and R. V. Nair, Phys. Rev. A 93 (2016) 063850.
  17. F. López-Tejeira, T. Ochiai, K. Sakoda, J. Sánchez-Dehesa, Phys. Rev. B 65 (2002) 115110.
  18. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26 (1968) 62-69.
  19. G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine and H. Míguez, Langmuir 25 (2009) 12860-12864.
  20. L. A. Dorado1, R. A. Depine, G. Lozano, and H. Míguez, Opt. Express 15 (2007) 17754-17760.