A simple design of water-based broadband metamaterial absorber for THz applications

Thi Kim Thu Nguyen, Thi Minh Nguyen, Hong Quang Nguyen, Thi Minh Tam Nguyen, Thi Huyen Thuong Ho, Tra My Pham, Dinh Lam Vu, Thi Quynh Hoa Nguyen
Author affiliations

Authors

  • Thi Kim Thu Nguyen \(^1\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam \(^2\)School of Engineering and Technology, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam
  • Thi Minh Nguyen \(^1\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam \(^2\)School of Engineering and Technology, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam
  • Hong Quang Nguyen \(^2\)School of Engineering and Technology
  • Thi Minh Tam Nguyen \(^2\)School of Engineering and Technology
  • Thi Huyen Thuong Ho \(^2\)School of Engineering and Technology, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam
  • Tra My Pham \(^2\)School of Engineering and Technology
  • Dinh Lam Vu \(^1\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thi Quynh Hoa Nguyen \(^{2}\)School of Engineering and Technology, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam https://orcid.org/0000-0002-0955-8241

DOI:

https://doi.org/10.15625/0868-3166/17484

Keywords:

water-based metamaterial absorber, THz, broadband

Abstract

A simple water-based broadband metamaterial absorber has been proposed for the terahertz region. The absorption bandwidth is extended based on large frequency dispersive permittivity and high relative dielectric loss of water. The simulated result indicates that the absorption of the proposed structure achieves over 90% in the frequency range from 0.6 to 10 THz at a normal incident angle. Moreover, the performance maintains high over 80% with a wide incident angle up to 60o for transverse electronic (TE) mode and over 90% up to 700 transverse magnetic (TM) mode in the entire operating frequency range. Therefore, the designed absorber has a potential candidate for broadband THz applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 (2008) 207402.

G. H. Li, X. S. Chen, O. P. Li, C. X. Shao, Y. Jiang, L. J. Huang, B. Ni, W. D. Hu and W. Lu, A novel plasmonic resonance sensor based on an infrared perfect absorber, J. Phys. Rev. D: Appl. Phys. 45 (2012) 205102.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough and D. R. S. Cumming, A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer, Laser Photonics Rev. 7 (2013) 1043.

E. K. Shahmarvandi, M. Ghaderi and R. F. Wolffenbuttel, CMOS-compatible fabrication of metamaterial-based absorbers for the mid-IR spectral range, J. Phys.: Conf. Ser. 757 (2016) 012033.

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol and C. Sabah, Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator, Opt. Quantum. Electron. 49 (2017) 257.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance, Phys. Rev. Lett. 104 (2010) 207403.

A. G. Paulish, P. S. Zagubisalo and S. A. Kuznetsov, High-performance metamaterial MM-to-IR converter for MM-wave imaging, The 38th Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) ), Mainz, Germany (2013) 1-2.

K. Chen, R. Adato, H. Altug, Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy, ACS Nano 6 (2012) 7998.

K. T. Lin, H. L. Chen, Y. S. Lai and C. C. Yu, Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths, Nat. Commun. 5 (2014) 3288.

P. F. Li, B. A. Liu, Y. Z. Ni, K. Y. Kevin, J. Sze, S. Chen and S. Shen, Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion, Adv. Mater. 27 (2015) 4585.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt and P. U. Jepsen, Flexible metamaterial absorbers for stealth pplications at terahertz frequencies, Opt. Express 20 (2012) 635-643.

Y. Q. Ye, Y. Jin and S. He, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime, Opt. Express 27 (2010) 498.

N. T. Q. Hoa, P. H. Lam, P. D. Tung, T. S. Tuan and H. Nguyen, Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region, IEEE Photonics J. 11 (2019) 1.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. L. He and N. X. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab, Nano Lett. 12 (2012) 1443.

D. T. Phan, T. K. T. Nguyen, N. H. Nguyen, D. T. Le, X. K. Bui, D. L. Vu, C. L. Truong and T. Q. H. Nguyen, Lightweight, ultra-Wideband, and polarization-insensitive metamaterial absorber using a multilayer dielectric structure for C- and X-band applications, Phys. Status Solidi. B 258 (2021) 2100175.

N. T. K. Thu, T. N. Cao, N. N. Hieu, B. X. Khuyen, T. C. Lam, V. D. Lam and N.T. Q. Hoa, Simple design of a wideband and wide-angle insensitive metamaterial absorber using lumped resistors for X- and Ku-bands, IEEE Photonics J. 13 (2021) 2200410.

H. Xiong, D. Li and H. Zhang, Broadband terahertz absorber based on hybrid Dirac semimetal and water, Opt. Laser Technol. 143 (2021) 107274.

R. Zhou, T. Jiang, Z. Peng, Z. Li, M. Zhang, S. Wang and H. Su, Tunable broadband terahertz absorber based on graphene metamaterials and VO2, Opt. Mater. 114 (2021) 110915.

R. Gao, Z. Xu, C. Ding, L. Wu and J. Yao, Graphene metamaterial for multiband and broadband terahertz absorber, Opt. Commun. 356 (2015) 400.

Y. Zhao, Q. Huang, H. Cai, X. Lin and Y. Lu, A broadband and switchable VO2-based perfect absorber at the THz frequency, Opt. Commun. 426 (2018) 443.

J. Huang, L. Ji, Y. Yang, L. Jie, L. Jiahui, Y. Zhang and J. Yao, Broadband terahertz absorber with a flexible,

reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces, Opt. Express 28 (2020) 17832.

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang and D. H. Werner, Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study, Opt. Express 27 (2019) 19436.

Y. Zhong, Y. Huang, S. Zhong, T. Lin, M. Luo, Y. Shen and J. Ding, Tunable terahertz broadband absorber based on MoS2 ring-cross array structure, Opt. Matter. 114 (2021) 110996.

Y. J. Yoo , S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee and Y. Lee, Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets, Sci. Rep. 5 (2015) 14018.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail and Y. Zetai, Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime, J. Phys. Rev. D: Appl. Phys. 50

(2017) 385304.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui and S. Qu, Thermally tunable water-substrate broadband metamaterial absorbers Appl. Phys. Lett. 110 (2017) 104103.

Jian Ren and Jia Yuan Yin, Cylindrical-water-resonator-based ultra-broadband microwave absorber, Opt. Mater. Express 8 (2018) 2060.

H. Xiong and F. Yang, Ultra-broadband and tunable saline water-based absorber in microwave regime, Opt. Express 28 (2020) 5306.

H. Zhang, F. Ling, H. Wang, Y. Zhang and B. Zhang, A water hybrid graphene metamaterial absorber with broadband absorption, Opt. Commun. 463 (2020) 125394.

J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin and M. Premaratne, Water metamaterial for ultra-broadband and wide-angle absorption, Opt. Express 26 (2018) 5052.

Y. Zhou, Z. Shen, X. Huang, J. Wu, Y. Li, S. Huang and H. Yang, Ultra-wideband water-based metamaterial absorber with temperature insensitivity, Phys. Lett. A 383 (2019) 2739.

H. Xiong, D. Li and H. Zhang, Broadband terahertz absorber based on hybrid Dirac semimetal and water, Opt Laser. Technol. 143 (2021) 107274

F. Lan, Z.F. Meng, J. F. Ruan, R. Z. Zou and S. W. Ji, All-dielectric water-based metamaterial absorber in terahertz domain, Opt. Matter. 121 (2021) 111572.

A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, Y.S. Kivshar, A.V. Lavrinenko, Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials, Sci. Rep. 5 (2015) 13535.

M. Zou, Z. Shen and J. Pan, Frequency-reconfigurable water antenna of circular polarization, Appl. Phys. Lett. 108 (2018) 014102.

Y. Li and K. M. Luk, A water dense dielectric patch antenna, IEEE Access 3 (2015) 274.

Q. Wu, F. Ling, C. Zhang, Z. Zhong and B. Zhang, Water-based metamaterials absorber with broadband absorption in terahertz region, Opt. Commun. 526 (2023) 128874.

J. Wen , Q. Zhao, R. Peng, H. Y. Yao, Y. Qing, J. Yin, and Q. Ren, Progress in water-based metamaterial absorbers: a review, Opt. Mater. Express 12 (2022) 1461.

Z. F. Meng, Z. Tao, J. F. Ruan, R. Z. Zou and S. W. Ji, Broadband-absorption mechanism in a water-based metamaterial absorber, Phys. Lett. A 445 (2022) 128269.

Y. Chen, K. Chen, D. Zhang, S. Li, Y. Xu, X. Wang and S. Zhuang, Ultrabroadband microwave absorber based on 3D water microchannels, Photon. Res. 9 (2021) 1391.

M. Zhang, F. Zhang, Y. Ou, J. Cai and H. Yu, Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface, Nanophotonics 8 (2019) 117.

T. Wu, Y. Shao, S. Ma, G. Wang, Y. Gao, Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate, Opt. Express 29 (2021) 7713

Downloads

Published

09-02-2023

How to Cite

[1]
T. K. T. Nguyen, T. M. Nguyen, H. Q. Nguyen, T. M. T. Nguyen, T. H. T. Ho, M. Pham Tra, D. L. Vu and H. Nguyen Thi Quynh, A simple design of water-based broadband metamaterial absorber for THz applications, Comm. Phys. 33 (2023) 93. DOI: https://doi.org/10.15625/0868-3166/17484.

Issue

Section

Papers
Received 02-09-2022
Accepted 30-10-2022
Published 09-02-2023