Facile Synthesis and Characterization of the Reduced Graphene Oxide/Co\(_3\)O\(_4\) Nanocomposite for Capacitive Application

Thi Nam Pham, Thi Thom Nguyen, Thi Thu Trang Nguyen, Thi Mai Thanh Dinh, Thi Kieu Anh Vo, Anh Son Nguyen, Dai Lam Tran
Author affiliations

Authors

  • Thi Nam Pham
  • Thi Thom Nguyen Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Thi Thu Trang Nguyen Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Thi Mai Thanh Dinh Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam and University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Thi Kieu Anh Vo Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Anh Son Nguyen
  • Dai Lam Tran Institute for Tropical Technology Vietnam Academy of Science and Technology https://orcid.org/0000-0003-1364-8001

DOI:

https://doi.org/10.15625/0868-3166/30/4/14964

Keywords:

Reduced Graphene Oxide (rGO), Co3O4, Capacitive application

Abstract

Reduced graphene oxide/Co\(_3\)O\(_4\) (rGO/Co\(_3\)O\(_4\)) were prepared by simple ultrasonic method from graphene oxide (GO) and Co(CH\(_3\)COO)\(_2\) precursor.  The synthesized rGO/CO3O4 was thoroughly characterized by SEM/EDX, XRD, FTIR and BET. The obtained results indicate the presence of well-crystalized Co\(_3\)O\(_4\) nanoparticles onto the rGO nanosheets in the lamellar structure of rGO/Co\(_3\)O\(_4\). Despite slight decrease in BET specific surface area (from 389.9 m\(^2\)/g of rGO to 218.7 m\(^2\)/g of rGO/Co\(_3\)O\(_4\)), cyclic voltammetry studies show that the rGO/Co3O4 electrode exhibited high specific capacitance (95.8 F/ g at 50 mV/ s) with redox properties. The synthesized composites are expected to be a potential electrode candidate in supercapacitor as well as in hybrid capacitive deionization (HCDI) system for the desalination purpose.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] M.C. Nongbe, T. Ekou, L. Ekou, K. B. Yao, E. Le Grognec, F-X. Felpin, Renew. Energy 106 (2017)135. DOI: https://doi.org/10.1016/j.renene.2017.01.024

[2] S. Aznar-Cervantes, J. G. Martinez, A. Bernabeu-Esclapez, A. A. Lozano-Perez, L. Meseguer-Olmo, T. F. Otero,

J. L, Cenis, Bioelectro Chemistry 108 (2016) 36. DOI: https://doi.org/10.1016/j.bioelechem.2015.12.003

[3] S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. P´erez, G. Burwell, I. Nikitskiy, T. Lasanta,

T. Gal´an, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens, Nat. Photonics 11 (2017)

[4] R. Ishikawa, S. Watanabe, S. Yamazaki, T. Oya, N. Tsuboi, ACS Appl. Energy Mater. 2 (1) (2019) 171. DOI: https://doi.org/10.1021/acsaem.8b01606

[5] H. Yang, S. Kannappan, A.S. Pandian, J-H. Jang, Y.S. Lee, W. Lu, Nanotechnology 28 (44) (2017) 445401. DOI: https://doi.org/10.1088/1361-6528/aa8948

[6] C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett. 10 (2010) 4863. DOI: https://doi.org/10.1021/nl102661q

[7] A. K. Geim, K.S. Novoselov,Nat. Mater. 6 (2007) 183. DOI: https://doi.org/10.1038/nmat1849

[8] C. Soldano, A. Mahmood, E. Dujardin, Carbon 48(8) (2010) 2127. DOI: https://doi.org/10.1016/j.carbon.2010.01.058

[9] M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 110 (1) 132. DOI: https://doi.org/10.1021/cr900070d

[10] D. R. Dreyer, S. Park, C. W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39 (2010) 228. DOI: https://doi.org/10.1039/B917103G

[11] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, J. Mater. Sci. 47 (2012) 4400. DOI: https://doi.org/10.1007/s10853-012-6294-5

[12] Y. Sun, J. Tang, K. Zhang, J. Yuan, J. Li, D-M. Zhu, K. Ozawa, L-C. Qin, Nanoscale 9 (2017) 2585. DOI: https://doi.org/10.1039/C6NR07650E

[13] M. Mooste, E. Kibena-P˜oldsepp, B.D. Ossonon, D. B´elanger, K. Tammeveski, Electrochim. Acta 267 (2018) DOI: https://doi.org/10.1016/j.electacta.2018.02.064

[14] R.K. Singh, R. Kumar, D.P. Singh, RSC. Adv. 6 (2016) 64993. DOI: https://doi.org/10.1039/C6RA07626B

[15] L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Str¨om, S. Farris, R. T. Olsson,

Nanoscale 9 (2017) 9562. DOI: https://doi.org/10.1039/C7NR02943H

[16] K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Carbon 119 (2017) 190. DOI: https://doi.org/10.1016/j.carbon.2017.04.025

[17] J. Li, W. Zhao, F. Huang, A. Manivannan, N.Q. Wu, Nanoscale 3(12) (2011) 5103. DOI: https://doi.org/10.1039/c1nr10802f

[18] V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan and B. Wei, J. Phys. Chem. B 109(43) (2005) 20207. DOI: https://doi.org/10.1021/jp0543330

[19] J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23 (18) (2011) 2076. DOI: https://doi.org/10.1002/adma.201100058

[20] A. Abdi, M. Trari, Electrochim. Acta 111 (2013) 869. DOI: https://doi.org/10.1016/j.electacta.2013.08.076

[21] Z-S. Wu, Y. Sun, Y-Z. Tan, S. Yang, X. Feng, K. Mullen, J. Am. Chem. Soc. 134(48) (2012) 19532. DOI: https://doi.org/10.1021/ja308676h

[22] Feng Du, Xueqin Zuo, Qun Yang, Guang Li, Zongling Ding, Mingzai Wua, Yongqing Ma, Shaowei Jin, Kerong

Zhu, Electrochim. Acta 222 (2016) 976. DOI: https://doi.org/10.1016/j.electacta.2016.11.065

[23] Chengcheng Xiang, Ming Li, Mingjia Zhi, Ayyakkannu Manivannan, Nianqiang Wu, J. Power Sources 226

(2013) 65e70.

[24] M. Haneef, H. Saleem and A. Habib, Synth. Met. 223 (2017) 101. DOI: https://doi.org/10.1016/j.synthmet.2016.12.006

[25] R. Kumar, H-J. Kim, S. Park, A. Srivastava, I-K. Oh, Carbon 79 (2014) 192. DOI: https://doi.org/10.1016/j.carbon.2014.07.059

[26] Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Colloids and Surfaces A: Physicochem. Eng. Aspects 424

(2013) 74.

[27] W-Y. Li, L-N. Xu, J. Chen, Adv. Funct. Mater. 15(5) (2005) 851. DOI: https://doi.org/10.1002/adfm.200400429

[28] S. Wang, Q. Li, M. Chen, W. Pu, Y. Wu, M. Yang, Electrochim. Acta 215 (2016) 473. DOI: https://doi.org/10.1016/j.electacta.2016.08.138

[29] K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, Carbon 53 (2013) 38. DOI: https://doi.org/10.1016/j.carbon.2012.10.013

[30] S.G. Christoskova, M. Stoyanova, M. Georgieva, D. Mehandjiev, Mater. Chem. Phys. 60 (1999) 39. DOI: https://doi.org/10.1016/S0254-0584(99)00053-X

[31] P.I. Ravikovitch, A.V. Neimark, Colloids and Surfaces A: Physicochem. Eng. Aspects 187-188 (2001) 11. DOI: https://doi.org/10.1016/S0927-7757(01)00614-8

[32] X-C. Dong, H. Xu, X-W. Wang, Y-X. Huang, M.B. Chan-Park, H. Zhang, L-H. Wang, W. Huang, P. Chen, ACS

Nano 6(4) (2012) 3206. DOI: https://doi.org/10.1021/nn300097q

Downloads

Published

10-12-2020

How to Cite

[1]
T. N. Pham, “Facile Synthesis and Characterization of the Reduced Graphene Oxide/Co\(_3\)O\(_4\) Nanocomposite for Capacitive Application”, Comm. Phys., vol. 30, no. 4, p. 409, Dec. 2020.

Issue

Section

Papers
Received 07-04-2020
Accepted 04-12-2020
Published 10-12-2020

Most read articles by the same author(s)