Vol. 30 No. 4 (2020)
Papers

Facile Synthesis and Characterization of the Reduced Graphene Oxide/Co\(_3\)O\(_4\) Nanocomposite for Capacitive Application

Thi Thom Nguyen
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
Thi Thu Trang Nguyen
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
Thi Mai Thanh Dinh
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam and University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
Thi Kieu Anh Vo
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
Dai Lam Tran
Institute for Tropical Technology Vietnam Academy of Science and Technology
Cover Vol 30 No 4 December 2020

Published 10-12-2020

Keywords

  • Reduced Graphene Oxide (rGO),
  • Co3O4,
  • Capacitive application

How to Cite

Pham, T. N., Nguyen, T. T., Nguyen, T. T. T., Dinh, T. M. T., Vo, T. K. A., Nguyen, A. S., & Tran, D. L. (2020). Facile Synthesis and Characterization of the Reduced Graphene Oxide/Co\(_3\)O\(_4\) Nanocomposite for Capacitive Application. Communications in Physics, 30(4), 409. https://doi.org/10.15625/0868-3166/30/4/14964

Abstract

Reduced graphene oxide/Co\(_3\)O\(_4\) (rGO/Co\(_3\)O\(_4\)) were prepared by simple ultrasonic method from graphene oxide (GO) and Co(CH\(_3\)COO)\(_2\) precursor.  The synthesized rGO/CO3O4 was thoroughly characterized by SEM/EDX, XRD, FTIR and BET. The obtained results indicate the presence of well-crystalized Co\(_3\)O\(_4\) nanoparticles onto the rGO nanosheets in the lamellar structure of rGO/Co\(_3\)O\(_4\). Despite slight decrease in BET specific surface area (from 389.9 m\(^2\)/g of rGO to 218.7 m\(^2\)/g of rGO/Co\(_3\)O\(_4\)), cyclic voltammetry studies show that the rGO/Co3O4 electrode exhibited high specific capacitance (95.8 F/ g at 50 mV/ s) with redox properties. The synthesized composites are expected to be a potential electrode candidate in supercapacitor as well as in hybrid capacitive deionization (HCDI) system for the desalination purpose.

Downloads

Download data is not yet available.

References

  1. [1] M.C. Nongbe, T. Ekou, L. Ekou, K. B. Yao, E. Le Grognec, F-X. Felpin, Renew. Energy 106 (2017)135.
  2. [2] S. Aznar-Cervantes, J. G. Martinez, A. Bernabeu-Esclapez, A. A. Lozano-Perez, L. Meseguer-Olmo, T. F. Otero,
  3. J. L, Cenis, Bioelectro Chemistry 108 (2016) 36.
  4. [3] S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. P´erez, G. Burwell, I. Nikitskiy, T. Lasanta,
  5. T. Gal´an, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens, Nat. Photonics 11 (2017)
  6. [4] R. Ishikawa, S. Watanabe, S. Yamazaki, T. Oya, N. Tsuboi, ACS Appl. Energy Mater. 2 (1) (2019) 171.
  7. [5] H. Yang, S. Kannappan, A.S. Pandian, J-H. Jang, Y.S. Lee, W. Lu, Nanotechnology 28 (44) (2017) 445401.
  8. [6] C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett. 10 (2010) 4863.
  9. [7] A. K. Geim, K.S. Novoselov,Nat. Mater. 6 (2007) 183.
  10. [8] C. Soldano, A. Mahmood, E. Dujardin, Carbon 48(8) (2010) 2127.
  11. [9] M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 110 (1) 132.
  12. [10] D. R. Dreyer, S. Park, C. W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39 (2010) 228.
  13. [11] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, J. Mater. Sci. 47 (2012) 4400.
  14. [12] Y. Sun, J. Tang, K. Zhang, J. Yuan, J. Li, D-M. Zhu, K. Ozawa, L-C. Qin, Nanoscale 9 (2017) 2585.
  15. [13] M. Mooste, E. Kibena-P˜oldsepp, B.D. Ossonon, D. B´elanger, K. Tammeveski, Electrochim. Acta 267 (2018)
  16. [14] R.K. Singh, R. Kumar, D.P. Singh, RSC. Adv. 6 (2016) 64993.
  17. [15] L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Str¨om, S. Farris, R. T. Olsson,
  18. Nanoscale 9 (2017) 9562.
  19. [16] K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Carbon 119 (2017) 190.
  20. [17] J. Li, W. Zhao, F. Huang, A. Manivannan, N.Q. Wu, Nanoscale 3(12) (2011) 5103.
  21. [18] V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan and B. Wei, J. Phys. Chem. B 109(43) (2005) 20207.
  22. [19] J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23 (18) (2011) 2076.
  23. [20] A. Abdi, M. Trari, Electrochim. Acta 111 (2013) 869.
  24. [21] Z-S. Wu, Y. Sun, Y-Z. Tan, S. Yang, X. Feng, K. Mullen, J. Am. Chem. Soc. 134(48) (2012) 19532.
  25. [22] Feng Du, Xueqin Zuo, Qun Yang, Guang Li, Zongling Ding, Mingzai Wua, Yongqing Ma, Shaowei Jin, Kerong
  26. Zhu, Electrochim. Acta 222 (2016) 976.
  27. [23] Chengcheng Xiang, Ming Li, Mingjia Zhi, Ayyakkannu Manivannan, Nianqiang Wu, J. Power Sources 226
  28. (2013) 65e70.
  29. [24] M. Haneef, H. Saleem and A. Habib, Synth. Met. 223 (2017) 101.
  30. [25] R. Kumar, H-J. Kim, S. Park, A. Srivastava, I-K. Oh, Carbon 79 (2014) 192.
  31. [26] Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Colloids and Surfaces A: Physicochem. Eng. Aspects 424
  32. (2013) 74.
  33. [27] W-Y. Li, L-N. Xu, J. Chen, Adv. Funct. Mater. 15(5) (2005) 851.
  34. [28] S. Wang, Q. Li, M. Chen, W. Pu, Y. Wu, M. Yang, Electrochim. Acta 215 (2016) 473.
  35. [29] K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, Carbon 53 (2013) 38.
  36. [30] S.G. Christoskova, M. Stoyanova, M. Georgieva, D. Mehandjiev, Mater. Chem. Phys. 60 (1999) 39.
  37. [31] P.I. Ravikovitch, A.V. Neimark, Colloids and Surfaces A: Physicochem. Eng. Aspects 187-188 (2001) 11.
  38. [32] X-C. Dong, H. Xu, X-W. Wang, Y-X. Huang, M.B. Chan-Park, H. Zhang, L-H. Wang, W. Huang, P. Chen, ACS
  39. Nano 6(4) (2012) 3206.