WITHDRAWN: Effects of Additives and Conductors on Properties of Conducting Porous Composite Based on Activated Carbon

Thom Thi Nguyen, Thu Phuong Nguyen, Hong Thi Cao, Kieu Anh Thi Vo, Thu Trang Thi Nguyen, Mai Thanh Thi Dinh, Dai Lam Tran, Nam Thi Pham
Author affiliations

Authors

  • Thom Thi Nguyen Institute for Tropical Technology, Vietnam Academy of Science and Technology
  • Thu Phuong Nguyen
  • Hong Thi Cao
  • Kieu Anh Thi Vo
  • Thu Trang Thi Nguyen
  • Mai Thanh Thi Dinh
  • Dai Lam Tran
  • Nam Thi Pham

DOI:

https://doi.org/10.15625/0868-3166/30/4/15441

Keywords:

Activated carbon, conducting porous composite, desalination, Capacitive Deionization technique.

Abstract

Climate change is increasingly clear and threatening to human life. One of the consequences of climate change is the increase of sea level leading to saline intrusion and serious shortage of fresh water. Today, some technologies are used to treat saline water such as Reverse Osmosis technology (RO), Multi-Effect Distillation (MED) technology, and Multi-Stage Discharge Technology (MSF), Electrodialysis (ED) and Capacitive Deionization (CDI). Among them, CDI technology is a technique for energy-saving and economical. The conductive composite electrode based on activated carbon from Tra Bac coconut shell charcoal were fabricated which were used as a electrode for CDI device. In this study, effect of adhesives and conductors on characterization and properties of the materials was investigated. The adhessive of PVDf and conductor of CNTs was chosen. With ratio of AC/CNTs = 9:1, the composite had a specific surface area of BET of about 517 m2/g and pore size of 1.71 nm.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] T. Younos and K.E. Tulou, Overview of desalination techniques, J. Contemporary Water Res. Education 132 (2005) 3. DOI: https://doi.org/10.1111/j.1936-704X.2005.mp132001002.x

[2] T.-Y. Ying, K.-L. Yang, S. Yiacoumi and C. Tsouris, J. Colloid Interf. Sci. 250 (2002) 18. DOI: https://doi.org/10.1006/jcis.2002.8314

[3] M. A. Anderson, A. L. Cudero and J. Palma, Electrochim Acta 55 (2010) 3845. DOI: https://doi.org/10.1016/j.electacta.2010.02.012

[4] S. Porada et al., Progress in Materials Science 58 (2013) 1388. DOI: https://doi.org/10.1016/j.pmatsci.2013.03.005

[5] Y. Oren, Desalination 228 (2008) 10. DOI: https://doi.org/10.1016/j.desal.2007.08.005

[6] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi and P.M. Biesheuvel, Appl. Mater.

Interfaces 4 (2012) 1194. DOI: https://doi.org/10.1021/am201683j

[7] Md Ashique Ahmed and Sanjay Tewari, J. Electroanalytical Chem. 813 (2018) 178. DOI: https://doi.org/10.1016/j.jelechem.2018.02.024

[8] B. H. Park and J. H. Choi, Electrochim. Acta 55 (2010) 888.

[9] B.-H. Park, Y.-J. Kim, J.-S. Park and J. Choi, J. Ind. Eng. Chem. 17 (2011) 717. DOI: https://doi.org/10.1016/j.jiec.2011.05.015

[10] Jae-Hwan Choi, Separation and Purification Technology 70 (2010) 362. DOI: https://doi.org/10.1016/j.seppur.2009.10.023

[11] W. Huang, Y. Zhang, S. Bao and S. Song, Surf. Rev. Lett. 20 (2013) 1330003. DOI: https://doi.org/10.1142/S0218625X13300050

[12] O. Rafeie, M. K. Razavi Aghjeh, A. Tavakoli, M. Salami Kalajahi and A. Jameie Oskooie, J. Appl. Polymer Sci. 135 (2018) 46333. DOI: https://doi.org/10.1002/app.46333

[13] Yoshitake Nishi, Shota Iizuka, Michael C. Faudree and Rvuichiro Ovama, Mater. Trans. 53 (2012) 940. DOI: https://doi.org/10.2320/matertrans.M2011273

Downloads

Published

02-11-2020

How to Cite

[1]
T. T. Nguyen, “WITHDRAWN: Effects of Additives and Conductors on Properties of Conducting Porous Composite Based on Activated Carbon”, Comm. Phys., vol. 30, no. 4, p. 373, Nov. 2020.

Issue

Section

Papers
Received 31-08-2020
Published 02-11-2020

Most read articles by the same author(s)