Open Access Open Access  Restricted Access Subscription Access

MARINE MICROBES: SOURCES OF NATURAL BIOACTIVE COMPOUNDS FOR APPLICATION IN PHARMACEUTICAL RESEARCH

Pham Thi Mien, Dao Viet Ha

Abstract


Marine microbiology is currently the topic that scientists worldwide are interested in with the aim of searching for bioactive substances. In addition to the inherent microorganisms in marine sediments, other marine lives - associated microorganisms have recently been more invested and important achievements of pharmaceutical research applications have been gained in the last few decades. In this article, we review the milestones in the process of looking for “drugs from the sea” and focus on remarkable results in marine microbes associated with invertebrate and their potential application in drug investigation from the latest published papers in prestigious international journals.

Keywords


Marine microbes, natural bioactive compounds, application in pharmaceutical research.

References


Simon, C., and Daniel, R., 2011. Metagenomic analyses: past and future trends. Applied and Environmental Microbiology, 77(4), 1153-1161.

Monaghan, R. L., and Tkacz, J. S., 1990. Bioactive microbial products: focus upon mechanism of action. Annual Reviews in Microbiology, 44(1), 271-331.

Capon, R. J., 2001. Marine Bioprospecting - Trawling for Treasure and Pleasure. European Journal of Organic Chemistry, 2001(4), 633-645.

Piel, J., 2004. Metabolites from symbiotic bacteria. Natural product reports, 21(4), 519-538.

Roussis, V., Wu, Z., Fenical, W., Strobel, S. A., Van Duyne, G. D., and Clardy, J., 1990. New anti-inflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. The Journal of Organic Chemistry, 55(16), 4916-4922.

Mydlarz, L. D., Jacobs, R. S., Boehnlein, J., and Kerr, R. G., 2003. Pseudopterosin biosynthesis in Symbiodinium sp., the dinoflagellate symbiont of Pseudopterogorgia elisabethae. Chemistry & biology, 10(11), 1051-1056.

Imhoff, J. F., Labes, A., and Wiese, J., 2011. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 29(5), 468-482.

Leal, M. C., Sheridan, C., Osinga, R., Dionísio, G., Rocha, R. J. M., Silva, B., Rosa, R., and Calado, R., 2014. Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Marine drugs, 12(7), 3929-3952.

Fuerst, J. A., 2014. Diversity and biotechnological potential of microorganisms associated with marine sponges. Applied microbiology and biotechnology, 98(17), 7331-7347.

Rocha, J., Peixe, L., Gomes, N., and Calado, R., 2011. Cnidarians as a source of new marine bioactive compounds - An overview of the last decade and future steps for bioprospecting. Marine drugs, 9(10), 1860-1886.

Sudek, S., Lopanik, N. B., Waggoner, L. E., Hildebrand, M., Anderson, C., Liu, H., Patel, A., Sherman, D. H., and Haygood, M. G., 2007. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. Journal of Natural Products, 70(1), 67-74.

Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., Mclntosh, J. M., Newman, D. J., Potts, B. C., and Shuster, D. E., 2010. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 31(6), 255-265.

Cuevas, C., and Francesch, A., 2009. Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Natural Product Reports, 26(3), 322-337.

Gerwick, W. H., and Fenner, A. M., 2013. Drug discovery from marine microbes. Microbial Ecology, 65(4), 800-806.

Taylor, M. W., Radax, R., Steger, D., and Wagner, M., 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71(2), 295-347.

Naim, M. A., Morillo, J. A., Sørensen, S. J., Waleed, A. A. S., Smidt, H., and Sipkema, D., 2014. Host-specific microbial communities in three sympatric North Sea sponges. FEMS Microbiology Ecology, 90(2), 390-403.

Thiel, V., Leininger, S., Schmaljohann, R., Brümmer, F., and Imhoff, J. F., 2007. Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microbial Ecology, 54(1), 101-111.

Webster, N. S., and Taylor, M. W., 2012. Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology, 14(2), 335-346.

Sharp, K. H., Eam, B., Faulkner, D. J., and Haygood, M. G., 2007. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and Environmental Microbiology, 73(2), 622-629.

Lee, O. O., Wang, Y., Yang, J., Lafi, F. F., Al-Suwailem, A., and Qian, P. Y., 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. The ISME Journal, 5(4), 650-664.

Siegl, A., Kamke, J., Hochmuth, T., Piel, J., Richter, M., Liang, C., Dandekar, T., and Hentschel, U., 2011. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. The ISME Journal, 5(1), 61-70.

Wiese, J., Ohlendorf, B., Blümel, M., Schmaljohann, R., and Imhoff, J. F., 2011. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Marine Drugs, 9(4), 561-585.

Yamada, T., Umebayashi, Y., Kawashima, M., Sugiura, Y., Kikuchi, T., and Tanaka, R., 2015. Determination of the chemical structures of Tandyukisins B-D, isolated from a marine sponge-derived fungus. Marine Drugs, 13(5), 3231-3240.

Wei, R. B., Xi, T., Li, J., Wang, P., Li, F. C., Lin, Y. C., and Qin, S., 2011. Lobophorin C and D, new kijanimicin derivatives from a marine sponge-associated actinomycetal strain AZS17. Marine Drugs, 9(3), 359-368.

Amagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A., and Crews, P., 2003. Structures and Cytotoxic Properties of Trichoverroids and Their Macrolide Analogues Produced by Saltwater Culture of Myrothecium verrucaria. Journal of Medicinal Chemistry, 46(20), 4342-4350.

Wu, B., Ohlendorf, B., Oesker, V., Wiese, J., Malien, S., Schmaljohann, R., and Imhoff, J. F., 2015. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Marine Biotechnology, 17(1), 110-119.

Rohwer, F., Seguritan, V., Azam, F., and Knowlton, N., 2002. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10.

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I., 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5(5), 355-362.

Leal, M. C., Puga, J., Serôdio, J., Gomes, N. C., and Calado, R., 2011. Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting?. PloS One, 7(1), e30580-e30580.

Webster, N. S., and Bourne, D., 2007. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiology Ecology, 59(1), 81-94.

Kvennefors, E. C. E., Sampayo, E., Kerr, C., Vieira, G., Roff, G., and Barnes, A. C., 2012. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microbial Ecology, 63(3), 605-618.

Shnit-Orland, M., Sivan, A., and Kushmaro, A., 2012. Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microbial Ecology, 64(4), 851-859.

Ritchie, K. B., 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1-14.

Reshef, L., Koren, O., Loya, Y., Zilber‐Rosenberg, I., and Rosenberg, E., 2006. The coral probiotic hypothesis. Environmental Microbiology, 8(12), 2068-2073.

Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., and Yossi, L., 2009. The role of microorganisms in coral bleaching. The ISME Journal, 3(2), 139-146.

Raina, J. B., Dinsdale, E. A., Willis, B. L., and Bourne, D. G., 2010. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends in Microbiology, 18(3), 101-108.

Raina, J. B., Tapiolas, D., Willis, B. L., and Bourne, D. G., 2009. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and Environmental Microbiology, 75(11), 3492-3501.

Kushmaro, A., Rosenberg, E., Fine, M., and Loya, Y., 1997. Bleaching of the coral Oculina patagonica by Vibrio AK-1. Marine Ecology Progress Series, 147, 159-165.

Ben-Haim, Y., and Rosenberg, E., 2002. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Marine Biology, 141(1), 47-55.

Ainsworth, T. D., Fine, M., Roff, G., and Hoegh-Guldberg, O., 2008. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. The ISME Journal, 2(1), 67-73.

Harder, T., Lau, S. C., Dobretsov, S., Fang, T. K., and Qian, P. Y., 2003. A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiology Ecology, 43(3), 337-347.

Dobretsov, S., and Qian, P. Y., 2004. The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. Journal of Experimental Marine Biology and Ecology, 299(1), 35-50.

Baz, J. P., Canedo, L. M., Puentes, J. L. F., and ELIPE, M. V. S., 1997. Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. The Journal of Antibiotics, 50(9), 738-741.

Romero, F., Espliego, F., Baz, J. P., De Quesada, T. G., Grávalos, D., De La Calle, F. E. R. N. A. N. D. O., and Fernández-Puentes, J. L., 1997. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. The Journal of Antibiotics, 50(9), 734-737.

Zheng, C. J., Shao, C. L., Guo, Z. Y., Chen, J. F., Deng, D. S., Yang, K. L., Chen, Y. Y., Fu, X. M., She, Z. G., Lin, Y. C., and Wang, C. Y., 2012. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. Journal of Natural Products, 75(2), 189-197.

Trisuwan, K., Khamthong, N., Rukachaisirikul, V., Phongpaichit, S., Preedanon, S., and Sakayaroj, J., 2010. Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. Journal of Natural Products, 73(9), 1507-1511.

Martin, M., Portetelle, D., Michel, G., and Vandenbol, M., 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology, 98(7), 2917-2935.

Armstrong, E., Yan, L., Boyd, K. G., Wright, P. C., and Burgess, J. G., 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461(1), 37-40.

Longford, S. R., Tujula, N. A., Crocetti, G. R., Holmes, A. J., Holmström, C., Kjelleberg, S., Steinberg, P. D., and Taylor, M. W., 2007. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquatic Microbial Ecology, 48(3), 217-229.

Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., and Thomas, T., 2013. The seaweed holobiont: understanding seaweed - bacteria interactions. FEMS Microbiology Reviews, 37(3), 462-476.

Lachnit, T., Meske, D., Wahl, M., Harder, T., and Schmitz, R., 2011. Epibacterial community patterns on marine macroalgae are host‐specific but temporally variable. Environmental Microbiology, 13(3), 655-665.

Ward-Rainey, N., Rainey, F. A., and Stackebrandt, E., 1996. A study of the bacterial flora associated with Holothuria atra. Journal of Experimental Marine Biology and Ecology, 203(1), 11-26.

Zhang, X., Nakahara, T., Miyazaki, M., Nogi, Y., Taniyama, S., Arakawa, O., Inoue, T., and Kudo, T., 2012. Diversity and function of aerobic culturable bacteria in the intestine of the sea cucumber Holothuria leucospilota. The Journal of General and Applied Microbiology, 58(6), 447-456.

Zhang, X., Nakahara, T., Murase, S., Nakata, H., Inoue, T., and Kudo, T., 2013. Physiological characterization of aerobic culturable bacteria in the intestine of the sea cucumber Apostichopus japonicus. The Journal of General and Applied Microbiology, 59(1), 1-10.

Martínez‐García, M., Díaz‐Valdés, M., Wanner, G., Ramos‐Esplá, A., and Antón, J., 2007. Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environmental Microbiology, 9(2), 521-534.

Martínez-García, M., Díaz-Valdés, M., Ramos-Esplá, A., Salvador, N., Lopez, P., Larriba, E., and Antón, J., 2007. Cytotoxicity of the ascidian Cystodytes dellechiajei against tumor cells and study of the involvement of associated microbiota in the production of cytotoxic compounds. Marine Drugs, 5(3), 52-70.

Schmidt, E. W., Nelson, J. T., Rasko, D. A., Sudek, S., Eisen, J. A., Haygood, M. G., and Ravel, J., 2005. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7315-7320.

Wijesekara, I., Zhang, C., Van Ta, Q., Vo, T. S., Li, Y. X., and Kim, S. K., 2014. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiological Research, 169(4), 255-261.

Liang, W. L., Le, X., Li, H. J., Yang, X. L., Chen, J. X., Xu, J., Liu, H. L., Wang, L. Y., Wang, K. T., Hu, K. C., Yang, D. P., and Lan, W. J., 2014. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Marine Drugs, 12(11), 5657-5676.

Nguyen, V. T., Lee, J. S., Qian, Z. J., Li, Y. X., Kim, K. N., Heo, S. J., Jeon, Y. J., Park, W. S., Choi, I. W., Je, J. Y., and Jung, W. K. (2013). Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Marine Drugs, 12(1), 69-87.

Okazaki, T., Kitahara, T., and Okami, Y., 1975. Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. The Journal of Antibiotics, 28(3), 176-184.

Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., and Fenical, W., 2003. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie International Edition, 42(3), 355-357.

Kwon, H. C., Kauffman, C. A., Jensen, P. R., & Fenical, W., 2006. Marinomycins A - D, Antitumor-Antibiotics of a New Structure Class from a Marine Actinomycete of the Recently Discovered Genus “Marinispora”. Journal of The American Chemical Society, 128(5), 1622-1632.

Fiedler, H. P., Bruntner, C., Riedlinger, J., Bull, A. T., Knutsen, G., Goodfellow, M., Jones, Amanda, Maldonado, L., Pathom-aree, W., Beil, W., Schneider, K., Keller, S., and Sussmuth, R .D., 2008. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. Journal of Antibiotics, 61(3), 158-163.

Sun, Y., Takada, K., Takemoto, Y., Yoshida, M., Nogi, Y., Okada, S., and Matsunaga, S., 2011. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. Journal of Natural Products, 75(1), 111-114.

Kaeberlein, T., Lewis, K., and Epstein, S. S., 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296(5570), 1127-1129.

Aoi, Y., Kinoshita, T., Hata, T., Ohta, H., Obokata, H., and Tsuneda, S., 2009. Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Applied and Environmental Microbiology, 75(11), 3826-3833.

Bollmann, A., Lewis, K., and Epstein, S. S., 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Applied and Environmental Microbiology, 73(20), 6386-6390.

Steinert, G., Whitfield, S., Taylor, M. W., Thoms, C., and Schupp, P. J., 2014. Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Marine Biotechnology, 16(5), 594-603.

Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X., 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea (Bien Dong Sea) sponges. World Journal of Microbiology and Biotechnology, 23(9), 1265-1272.

Schneider, K., Chen, X. H., Vater, J., Franke, P., Nicholson, G., Borriss, R., and Süssmuth, R. D., 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. Journal of Natural Products, 70(9), 1417-1423.

Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C . E., Bowring, S. A., Condon D, J., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457(7230), 718-721.

Hooper, J. N. A., Kennedy, J. A., and van Soest, R. W. M., 2000. Annotated checklist of sponges (Porifera) of the South China Sea (Bien Dong Sea) region. The Raffles Bulletin of Zoology, (8), 125-207.

Dang, N. H., Van Thanh, N., Van Kiem, P., Huong, L. M., Van Minh, C., and Kim, Y. H., 2007. Two new triterpene glycosides from the Vietnamese sea cucumber Holothuria scabra. Archives of Pharmacal Research, 30(11), 1387-1391.

Tung, N. H., Van Minh, C., Van Kiem, P., Huong, H. T., Nam, N. H., Cuong, N. X., Quang, T. H., Nhiem, N. X., Huyn, J. H., Kang, H. K., and Kim, Y. H., 2010. Chemical components from the Vietnamese soft coral Lobophytum sp. Archives of Pharmacal Research, 33(4), 503-508.

Quang, T. H., Ha, T. T., Van Minh, C., Van Kiem, P., Huong, H. T., Ngan, N. T. T., Nhiem, N. X., Tung, N. H., Thao, N. P., Thuy, D. T. T., Song, S. B., Boo, H. J., Kang, H. K., andKim, Y. H., 2011. Cytotoxic and PPARs transcriptional activities of sterols from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic and Medicinal Chemistry Letters, 21(10), 2845-2849.

Quang, T. H., Ha, T. T., Van Minh, C., Van Kiem, P., Huong, H. T., Ngan, N. T. T., Nhiem, N. X., Tung, N. H., Tai, B. H., Thuy, D. T. T., Song, S. B., Kang, H. K., and Kim, Y. H., 2011. Cytotoxic and anti-inflammatory cembranoids from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic and Medicinal Chemistry, 19(8), 2625-2632.

Thao, N. P., Luyen, B. T. T., Sun, Y. N., Song, S. B., Van Thanh, N., Cuong, N. X., Nam, N. H., Van Kiem, P., Kim, Y. H., and Van Minh, C., 2014. NF-κB inhibitory activity of polyoxygenated steroids from the Vietnamese soft coral Sarcophyton pauciplicatum. Bioorganic and Medicinal chemistry letters, 24(13), 2834-2838.

Thao, N. P., Luyen, B. T. T., Ngan, N. T. T., Song, S. B., Cuong, N. X., Nam, N. H., Van Kiem, P., Kim, Y. H., and Van Minh, C., 2014. New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorganic and Medicinal Chemistry Letters, 24(1), 228-232.

Thao, N. P., Nam, N. H., Cuong, N. X., Quang, T. H., Tung, P. T., Dat, L. D., Chae, D., Kim, S., Koh, Y. S., Van Kiem, P., Van Minh, C., and Kim, Y. H., 2013. Anti-inflammatory norditerpenoids from the soft coral Sinularia maxima. Bioorganic and Medicinal Chemistry Letters, 23(1), 228-231.

Tung, N. H., Van Minh, C., Ha, T. T., Van Kiem, P., Huong, H. T., Dat, N. T., Nhiem, N. X., Tai, B. H., Huyn, J. H., Kang, H. K., and Kim, Y. H., 2009. C 29 sterols with a cyclopropane ring at C-25 and 26 from the Vietnamese marine sponge Ianthella sp. and their anticancer properties. Bioorganic and Medicinal Chemistry Letters, 19(16), 4584-4588.

Utkina, N. K., and Denisenko, V. A., 2011. Sesquiterpene quinones from a Vietnam sea sponge Spongia sp. Chemistry of Natural Compounds, 47(1), 135-137.

Mullowney, M. W., Ó hAinmhire, E., Tanouye, U., Burdette, J. E., Pham, V. C., and Murphy, B. T., 2015. A Pimarane Diterpene and Cytotoxic Angucyclines from a Marine-Derived Micromonospora sp. in Vietnam’s East Sea. Marine Drugs, 13(9), 5815-5827.

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H., and Prinsep, M. R., 2016. Marine natural products. Natural Product Reports, 33(3), 382-431.

Cragg, G. M., and Newman, D. J., 2013. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695.

Basilio, A., Gonzalez, I., Vicente, M. F., Gorrochategui, J., Cabello, A., Gonzalez, A., and Genilloud, O., 2003. Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. Journal of Applied Microbiology, 95(4), 814-823.

Watve, M. G., Tickoo, R., Jog, M. M., and Bhole, B. D., 2001. How many antibiotics are produced by the genus Streptomyces?. Archives of Microbiology, 176(5), 386-390.

Gomes, N. G., Lefranc, F., Kijjoa, A., and Kiss, R., 2015. Can some marine-derived fungal metabolites become actual anticancer agents?. Marine Drugs, 13(6), 3950-3991.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Journal of Marine Science and Technology ISSN: 1859 3097

Published by Vietnam Academy of Science and Technology