MARINE MICROBES: SOURCES OF NATURAL BIOACTIVE COMPOUNDS FOR APPLICATION IN PHARMACEUTICAL RESEARCH

Pham Thi Mien, Dao Viet Ha
Author affiliations

Authors

  • Pham Thi Mien Institute of Oceanography-VAST
  • Dao Viet Ha Institute of Oceanography-VAST

DOI:

https://doi.org/10.15625/1859-3097/17/2/8365

Keywords:

Marine microbes, natural bioactive compounds, application in pharmaceutical research.

Abstract

Marine microbiology is currently the topic that scientists worldwide are interested in with the aim of searching for bioactive substances. In addition to the inherent microorganisms in marine sediments, other marine lives - associated microorganisms have recently been more invested and important achievements of pharmaceutical research applications have been gained in the last few decades. In this article, we review the milestones in the process of looking for “drugs from the sea” and focus on remarkable results in marine microbes associated with invertebrate and their potential application in drug investigation from the latest published papers in prestigious international journals.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Simon, C., and Daniel, R., 2011. Metagenomic analyses: past and future trends. Applied and Environmental Microbiology, 77(4), 1153-1161. DOI: https://doi.org/10.1128/AEM.02345-10

Monaghan, R. L., and Tkacz, J. S., 1990. Bioactive microbial products: focus upon mechanism of action. Annual Reviews in Microbiology, 44(1), 271-331. DOI: https://doi.org/10.1146/annurev.mi.44.100190.001415

Capon, R. J., 2001. Marine Bioprospecting - Trawling for Treasure and Pleasure. European Journal of Organic Chemistry, 2001(4), 633-645. DOI: https://doi.org/10.1002/1099-0690(200102)2001:4<633::AID-EJOC633>3.0.CO;2-Q

Piel, J., 2004. Metabolites from symbiotic bacteria. Natural product reports, 21(4), 519-538. DOI: https://doi.org/10.1039/b310175b

Roussis, V., Wu, Z., Fenical, W., Strobel, S. A., Van Duyne, G. D., and Clardy, J., 1990. New anti-inflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. The Journal of Organic Chemistry, 55(16), 4916-4922. DOI: https://doi.org/10.1021/jo00303a030

Mydlarz, L. D., Jacobs, R. S., Boehnlein, J., and Kerr, R. G., 2003. Pseudopterosin biosynthesis in Symbiodinium sp., the dinoflagellate symbiont of Pseudopterogorgia elisabethae. Chemistry & biology, 10(11), 1051-1056. DOI: https://doi.org/10.1016/j.chembiol.2003.10.012

Imhoff, J. F., Labes, A., and Wiese, J., 2011. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 29(5), 468-482. DOI: https://doi.org/10.1016/j.biotechadv.2011.03.001

Leal, M. C., Sheridan, C., Osinga, R., Dionísio, G., Rocha, R. J. M., Silva, B., Rosa, R., and Calado, R., 2014. Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Marine drugs, 12(7), 3929-3952. DOI: https://doi.org/10.3390/md12073929

Fuerst, J. A., 2014. Diversity and biotechnological potential of microorganisms associated with marine sponges. Applied microbiology and biotechnology, 98(17), 7331-7347. DOI: https://doi.org/10.1007/s00253-014-5861-x

Rocha, J., Peixe, L., Gomes, N., and Calado, R., 2011. Cnidarians as a source of new marine bioactive compounds - An overview of the last decade and future steps for bioprospecting. Marine drugs, 9(10), 1860-1886. DOI: https://doi.org/10.3390/md9101860

Sudek, S., Lopanik, N. B., Waggoner, L. E., Hildebrand, M., Anderson, C., Liu, H., Patel, A., Sherman, D. H., and Haygood, M. G., 2007. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. Journal of Natural Products, 70(1), 67-74. DOI: https://doi.org/10.1021/np060361d

Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., Mclntosh, J. M., Newman, D. J., Potts, B. C., and Shuster, D. E., 2010. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 31(6), 255-265. DOI: https://doi.org/10.1016/j.tips.2010.02.005

Cuevas, C., and Francesch, A., 2009. Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Natural Product Reports, 26(3), 322-337. DOI: https://doi.org/10.1039/b808331m

Gerwick, W. H., and Fenner, A. M., 2013. Drug discovery from marine microbes. Microbial Ecology, 65(4), 800-806. DOI: https://doi.org/10.1007/s00248-012-0169-9

Taylor, M. W., Radax, R., Steger, D., and Wagner, M., 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71(2), 295-347. DOI: https://doi.org/10.1128/MMBR.00040-06

Naim, M. A., Morillo, J. A., Sørensen, S. J., Waleed, A. A. S., Smidt, H., and Sipkema, D., 2014. Host-specific microbial communities in three sympatric North Sea sponges. FEMS Microbiology Ecology, 90(2), 390-403. DOI: https://doi.org/10.1111/1574-6941.12400

Thiel, V., Leininger, S., Schmaljohann, R., Brümmer, F., and Imhoff, J. F., 2007. Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microbial Ecology, 54(1), 101-111. DOI: https://doi.org/10.1007/s00248-006-9177-y

Webster, N. S., and Taylor, M. W., 2012. Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology, 14(2), 335-346. DOI: https://doi.org/10.1111/j.1462-2920.2011.02460.x

Sharp, K. H., Eam, B., Faulkner, D. J., and Haygood, M. G., 2007. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and Environmental Microbiology, 73(2), 622-629. DOI: https://doi.org/10.1128/AEM.01493-06

Lee, O. O., Wang, Y., Yang, J., Lafi, F. F., Al-Suwailem, A., and Qian, P. Y., 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. The ISME Journal, 5(4), 650-664. DOI: https://doi.org/10.1038/ismej.2010.165

Siegl, A., Kamke, J., Hochmuth, T., Piel, J., Richter, M., Liang, C., Dandekar, T., and Hentschel, U., 2011. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. The ISME Journal, 5(1), 61-70. DOI: https://doi.org/10.1038/ismej.2010.95

Wiese, J., Ohlendorf, B., Blümel, M., Schmaljohann, R., and Imhoff, J. F., 2011. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Marine Drugs, 9(4), 561-585. DOI: https://doi.org/10.3390/md9040561

Yamada, T., Umebayashi, Y., Kawashima, M., Sugiura, Y., Kikuchi, T., and Tanaka, R., 2015. Determination of the chemical structures of Tandyukisins B-D, isolated from a marine sponge-derived fungus. Marine Drugs, 13(5), 3231-3240. DOI: https://doi.org/10.3390/md13053231

Wei, R. B., Xi, T., Li, J., Wang, P., Li, F. C., Lin, Y. C., and Qin, S., 2011. Lobophorin C and D, new kijanimicin derivatives from a marine sponge-associated actinomycetal strain AZS17. Marine Drugs, 9(3), 359-368. DOI: https://doi.org/10.3390/md9030359

Amagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A., and Crews, P., 2003. Structures and Cytotoxic Properties of Trichoverroids and Their Macrolide Analogues Produced by Saltwater Culture of Myrothecium verrucaria. Journal of Medicinal Chemistry, 46(20), 4342-4350. DOI: https://doi.org/10.1021/jm030090t

Wu, B., Ohlendorf, B., Oesker, V., Wiese, J., Malien, S., Schmaljohann, R., and Imhoff, J. F., 2015. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Marine Biotechnology, 17(1), 110-119. DOI: https://doi.org/10.1007/s10126-014-9599-3

Rohwer, F., Seguritan, V., Azam, F., and Knowlton, N., 2002. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. DOI: https://doi.org/10.3354/meps243001

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I., 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5(5), 355-362. DOI: https://doi.org/10.1038/nrmicro1635

Leal, M. C., Puga, J., Serôdio, J., Gomes, N. C., and Calado, R., 2011. Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting?. PloS One, 7(1), e30580-e30580. DOI: https://doi.org/10.1371/journal.pone.0030580

Webster, N. S., and Bourne, D., 2007. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiology Ecology, 59(1), 81-94. DOI: https://doi.org/10.1111/j.1574-6941.2006.00195.x

Kvennefors, E. C. E., Sampayo, E., Kerr, C., Vieira, G., Roff, G., and Barnes, A. C., 2012. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microbial Ecology, 63(3), 605-618. DOI: https://doi.org/10.1007/s00248-011-9946-0

Shnit-Orland, M., Sivan, A., and Kushmaro, A., 2012. Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microbial Ecology, 64(4), 851-859. DOI: https://doi.org/10.1007/s00248-012-0086-y

Ritchie, K. B., 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1-14. DOI: https://doi.org/10.3354/meps322001

Reshef, L., Koren, O., Loya, Y., Zilber‐Rosenberg, I., and Rosenberg, E., 2006. The coral probiotic hypothesis. Environmental Microbiology, 8(12), 2068-2073. DOI: https://doi.org/10.1111/j.1462-2920.2006.01148.x

Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., and Yossi, L., 2009. The role of microorganisms in coral bleaching. The ISME Journal, 3(2), 139-146. DOI: https://doi.org/10.1038/ismej.2008.104

Raina, J. B., Dinsdale, E. A., Willis, B. L., and Bourne, D. G., 2010. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends in Microbiology, 18(3), 101-108. DOI: https://doi.org/10.1016/j.tim.2009.12.002

Raina, J. B., Tapiolas, D., Willis, B. L., and Bourne, D. G., 2009. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and Environmental Microbiology, 75(11), 3492-3501. DOI: https://doi.org/10.1128/AEM.02567-08

Kushmaro, A., Rosenberg, E., Fine, M., and Loya, Y., 1997. Bleaching of the coral Oculina patagonica by Vibrio AK-1. Marine Ecology Progress Series, 147, 159-165. DOI: https://doi.org/10.3354/meps147159

Ben-Haim, Y., and Rosenberg, E., 2002. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Marine Biology, 141(1), 47-55. DOI: https://doi.org/10.1007/s00227-002-0797-6

Ainsworth, T. D., Fine, M., Roff, G., and Hoegh-Guldberg, O., 2008. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. The ISME Journal, 2(1), 67-73. DOI: https://doi.org/10.1038/ismej.2007.88

Harder, T., Lau, S. C., Dobretsov, S., Fang, T. K., and Qian, P. Y., 2003. A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiology Ecology, 43(3), 337-347. DOI: https://doi.org/10.1111/j.1574-6941.2003.tb01074.x

Dobretsov, S., and Qian, P. Y., 2004. The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. Journal of Experimental Marine Biology and Ecology, 299(1), 35-50. DOI: https://doi.org/10.1016/j.jembe.2003.08.011

Baz, J. P., Canedo, L. M., Puentes, J. L. F., and ELIPE, M. V. S., 1997. Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. The Journal of Antibiotics, 50(9), 738-741. DOI: https://doi.org/10.7164/antibiotics.50.738

Romero, F., Espliego, F., Baz, J. P., De Quesada, T. G., Grávalos, D., De La Calle, F. E. R. N. A. N. D. O., and Fernández-Puentes, J. L., 1997. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. The Journal of Antibiotics, 50(9), 734-737. DOI: https://doi.org/10.7164/antibiotics.50.734

Zheng, C. J., Shao, C. L., Guo, Z. Y., Chen, J. F., Deng, D. S., Yang, K. L., Chen, Y. Y., Fu, X. M., She, Z. G., Lin, Y. C., and Wang, C. Y., 2012. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. Journal of Natural Products, 75(2), 189-197. DOI: https://doi.org/10.1021/np200766d

Trisuwan, K., Khamthong, N., Rukachaisirikul, V., Phongpaichit, S., Preedanon, S., and Sakayaroj, J., 2010. Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. Journal of Natural Products, 73(9), 1507-1511. DOI: https://doi.org/10.1021/np100282k

Martin, M., Portetelle, D., Michel, G., and Vandenbol, M., 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology, 98(7), 2917-2935. DOI: https://doi.org/10.1007/s00253-014-5557-2

Armstrong, E., Yan, L., Boyd, K. G., Wright, P. C., and Burgess, J. G., 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461(1), 37-40. DOI: https://doi.org/10.1023/A:1012756913566

Longford, S. R., Tujula, N. A., Crocetti, G. R., Holmes, A. J., Holmström, C., Kjelleberg, S., Steinberg, P. D., and Taylor, M. W., 2007. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquatic Microbial Ecology, 48(3), 217-229. DOI: https://doi.org/10.3354/ame048217

Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., and Thomas, T., 2013. The seaweed holobiont: understanding seaweed - bacteria interactions. FEMS Microbiology Reviews, 37(3), 462-476. DOI: https://doi.org/10.1111/1574-6976.12011

Lachnit, T., Meske, D., Wahl, M., Harder, T., and Schmitz, R., 2011. Epibacterial community patterns on marine macroalgae are host‐specific but temporally variable. Environmental Microbiology, 13(3), 655-665. DOI: https://doi.org/10.1111/j.1462-2920.2010.02371.x

Ward-Rainey, N., Rainey, F. A., and Stackebrandt, E., 1996. A study of the bacterial flora associated with Holothuria atra. Journal of Experimental Marine Biology and Ecology, 203(1), 11-26. DOI: https://doi.org/10.1016/0022-0981(96)02566-X

Zhang, X., Nakahara, T., Miyazaki, M., Nogi, Y., Taniyama, S., Arakawa, O., Inoue, T., and Kudo, T., 2012. Diversity and function of aerobic culturable bacteria in the intestine of the sea cucumber Holothuria leucospilota. The Journal of General and Applied Microbiology, 58(6), 447-456. DOI: https://doi.org/10.2323/jgam.58.447

Zhang, X., Nakahara, T., Murase, S., Nakata, H., Inoue, T., and Kudo, T., 2013. Physiological characterization of aerobic culturable bacteria in the intestine of the sea cucumber Apostichopus japonicus. The Journal of General and Applied Microbiology, 59(1), 1-10. DOI: https://doi.org/10.2323/jgam.59.1

Martínez‐García, M., Díaz‐Valdés, M., Wanner, G., Ramos‐Esplá, A., and Antón, J., 2007. Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environmental Microbiology, 9(2), 521-534. DOI: https://doi.org/10.1111/j.1462-2920.2006.01170.x

Martínez-García, M., Díaz-Valdés, M., Ramos-Esplá, A., Salvador, N., Lopez, P., Larriba, E., and Antón, J., 2007. Cytotoxicity of the ascidian Cystodytes dellechiajei against tumor cells and study of the involvement of associated microbiota in the production of cytotoxic compounds. Marine Drugs, 5(3), 52-70. DOI: https://doi.org/10.3390/md503052

Schmidt, E. W., Nelson, J. T., Rasko, D. A., Sudek, S., Eisen, J. A., Haygood, M. G., and Ravel, J., 2005. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7315-7320. DOI: https://doi.org/10.1073/pnas.0501424102

Wijesekara, I., Zhang, C., Van Ta, Q., Vo, T. S., Li, Y. X., and Kim, S. K., 2014. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiological Research, 169(4), 255-261. DOI: https://doi.org/10.1016/j.micres.2013.09.001

Liang, W. L., Le, X., Li, H. J., Yang, X. L., Chen, J. X., Xu, J., Liu, H. L., Wang, L. Y., Wang, K. T., Hu, K. C., Yang, D. P., and Lan, W. J., 2014. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Marine Drugs, 12(11), 5657-5676. DOI: https://doi.org/10.3390/md12115657

Nguyen, V. T., Lee, J. S., Qian, Z. J., Li, Y. X., Kim, K. N., Heo, S. J., Jeon, Y. J., Park, W. S., Choi, I. W., Je, J. Y., and Jung, W. K. (2013). Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Marine Drugs, 12(1), 69-87. DOI: https://doi.org/10.3390/md12010069

Okazaki, T., Kitahara, T., and Okami, Y., 1975. Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. The Journal of Antibiotics, 28(3), 176-184. DOI: https://doi.org/10.7164/antibiotics.28.176

Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., and Fenical, W., 2003. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie International Edition, 42(3), 355-357. DOI: https://doi.org/10.1002/anie.200390115

Kwon, H. C., Kauffman, C. A., Jensen, P. R., & Fenical, W., 2006. Marinomycins A - D, Antitumor-Antibiotics of a New Structure Class from a Marine Actinomycete of the Recently Discovered Genus “Marinispora”. Journal of The American Chemical Society, 128(5), 1622-1632. DOI: https://doi.org/10.1021/ja0558948

Fiedler, H. P., Bruntner, C., Riedlinger, J., Bull, A. T., Knutsen, G., Goodfellow, M., Jones, Amanda, Maldonado, L., Pathom-aree, W., Beil, W., Schneider, K., Keller, S., and Sussmuth, R .D., 2008. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. Journal of Antibiotics, 61(3), 158-163. DOI: https://doi.org/10.1038/ja.2008.125

Sun, Y., Takada, K., Takemoto, Y., Yoshida, M., Nogi, Y., Okada, S., and Matsunaga, S., 2011. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. Journal of Natural Products, 75(1), 111-114. DOI: https://doi.org/10.1021/np200740e

Kaeberlein, T., Lewis, K., and Epstein, S. S., 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296(5570), 1127-1129. DOI: https://doi.org/10.1126/science.1070633

Aoi, Y., Kinoshita, T., Hata, T., Ohta, H., Obokata, H., and Tsuneda, S., 2009. Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Applied and Environmental Microbiology, 75(11), 3826-3833. DOI: https://doi.org/10.1128/AEM.02542-08

Bollmann, A., Lewis, K., and Epstein, S. S., 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Applied and Environmental Microbiology, 73(20), 6386-6390. DOI: https://doi.org/10.1128/AEM.01309-07

Steinert, G., Whitfield, S., Taylor, M. W., Thoms, C., and Schupp, P. J., 2014. Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Marine Biotechnology, 16(5), 594-603. DOI: https://doi.org/10.1007/s10126-014-9575-y

Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X., 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea (Bien Dong Sea) sponges. World Journal of Microbiology and Biotechnology, 23(9), 1265-1272. DOI: https://doi.org/10.1007/s11274-007-9359-x

Schneider, K., Chen, X. H., Vater, J., Franke, P., Nicholson, G., Borriss, R., and Süssmuth, R. D., 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. Journal of Natural Products, 70(9), 1417-1423. DOI: https://doi.org/10.1021/np070070k

Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C . E., Bowring, S. A., Condon D, J., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457(7230), 718-721. DOI: https://doi.org/10.1038/nature07673

Hooper, J. N. A., Kennedy, J. A., and van Soest, R. W. M., 2000. Annotated checklist of sponges (Porifera) of the South China Sea (Bien Dong Sea) region. The Raffles Bulletin of Zoology, (8), 125-207.

Dang, N. H., Van Thanh, N., Van Kiem, P., Huong, L. M., Van Minh, C., and Kim, Y. H., 2007. Two new triterpene glycosides from the Vietnamese sea cucumber Holothuria scabra. Archives of Pharmacal Research, 30(11), 1387-1391. DOI: https://doi.org/10.1007/BF02977361

Tung, N. H., Van Minh, C., Van Kiem, P., Huong, H. T., Nam, N. H., Cuong, N. X., Quang, T. H., Nhiem, N. X., Huyn, J. H., Kang, H. K., and Kim, Y. H., 2010. Chemical components from the Vietnamese soft coral Lobophytum sp. Archives of Pharmacal Research, 33(4), 503-508. DOI: https://doi.org/10.1007/s12272-010-0402-3

Quang, T. H., Ha, T. T., Van Minh, C., Van Kiem, P., Huong, H. T., Ngan, N. T. T., Nhiem, N. X., Tung, N. H., Thao, N. P., Thuy, D. T. T., Song, S. B., Boo, H. J., Kang, H. K., andKim, Y. H., 2011. Cytotoxic and PPARs transcriptional activities of sterols from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic and Medicinal Chemistry Letters, 21(10), 2845-2849. DOI: https://doi.org/10.1016/j.bmcl.2011.03.089

Quang, T. H., Ha, T. T., Van Minh, C., Van Kiem, P., Huong, H. T., Ngan, N. T. T., Nhiem, N. X., Tung, N. H., Tai, B. H., Thuy, D. T. T., Song, S. B., Kang, H. K., and Kim, Y. H., 2011. Cytotoxic and anti-inflammatory cembranoids from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic and Medicinal Chemistry, 19(8), 2625-2632. DOI: https://doi.org/10.1016/j.bmc.2011.03.009

Thao, N. P., Luyen, B. T. T., Sun, Y. N., Song, S. B., Van Thanh, N., Cuong, N. X., Nam, N. H., Van Kiem, P., Kim, Y. H., and Van Minh, C., 2014. NF-κB inhibitory activity of polyoxygenated steroids from the Vietnamese soft coral Sarcophyton pauciplicatum. Bioorganic and Medicinal chemistry letters, 24(13), 2834-2838. DOI: https://doi.org/10.1016/j.bmcl.2014.04.103

Thao, N. P., Luyen, B. T. T., Ngan, N. T. T., Song, S. B., Cuong, N. X., Nam, N. H., Van Kiem, P., Kim, Y. H., and Van Minh, C., 2014. New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorganic and Medicinal Chemistry Letters, 24(1), 228-232. DOI: https://doi.org/10.1016/j.bmcl.2013.11.033

Thao, N. P., Nam, N. H., Cuong, N. X., Quang, T. H., Tung, P. T., Dat, L. D., Chae, D., Kim, S., Koh, Y. S., Van Kiem, P., Van Minh, C., and Kim, Y. H., 2013. Anti-inflammatory norditerpenoids from the soft coral Sinularia maxima. Bioorganic and Medicinal Chemistry Letters, 23(1), 228-231. DOI: https://doi.org/10.1016/j.bmcl.2012.10.129

Tung, N. H., Van Minh, C., Ha, T. T., Van Kiem, P., Huong, H. T., Dat, N. T., Nhiem, N. X., Tai, B. H., Huyn, J. H., Kang, H. K., and Kim, Y. H., 2009. C 29 sterols with a cyclopropane ring at C-25 and 26 from the Vietnamese marine sponge Ianthella sp. and their anticancer properties. Bioorganic and Medicinal Chemistry Letters, 19(16), 4584-4588. DOI: https://doi.org/10.1016/j.bmcl.2009.06.097

Utkina, N. K., and Denisenko, V. A., 2011. Sesquiterpene quinones from a Vietnam sea sponge Spongia sp. Chemistry of Natural Compounds, 47(1), 135-137. DOI: https://doi.org/10.1007/s10600-011-9858-8

Mullowney, M. W., Ó hAinmhire, E., Tanouye, U., Burdette, J. E., Pham, V. C., and Murphy, B. T., 2015. A Pimarane Diterpene and Cytotoxic Angucyclines from a Marine-Derived Micromonospora sp. in Vietnam’s East Sea. Marine Drugs, 13(9), 5815-5827. DOI: https://doi.org/10.3390/md13095815

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H., and Prinsep, M. R., 2016. Marine natural products. Natural Product Reports, 33(3), 382-431. DOI: https://doi.org/10.1039/C5NP00156K

Cragg, G. M., and Newman, D. J., 2013. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695. DOI: https://doi.org/10.1016/j.bbagen.2013.02.008

Basilio, A., Gonzalez, I., Vicente, M. F., Gorrochategui, J., Cabello, A., Gonzalez, A., and Genilloud, O., 2003. Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. Journal of Applied Microbiology, 95(4), 814-823. DOI: https://doi.org/10.1046/j.1365-2672.2003.02049.x

Watve, M. G., Tickoo, R., Jog, M. M., and Bhole, B. D., 2001. How many antibiotics are produced by the genus Streptomyces?. Archives of Microbiology, 176(5), 386-390. DOI: https://doi.org/10.1007/s002030100345

Gomes, N. G., Lefranc, F., Kijjoa, A., and Kiss, R., 2015. Can some marine-derived fungal metabolites become actual anticancer agents?. Marine Drugs, 13(6), 3950-3991. DOI: https://doi.org/10.3390/md13063950

Downloads

Published

30-06-2017

How to Cite

Mien, P. T., & Ha, D. V. (2017). MARINE MICROBES: SOURCES OF NATURAL BIOACTIVE COMPOUNDS FOR APPLICATION IN PHARMACEUTICAL RESEARCH. Vietnam Journal of Marine Science and Technology, 17(2), 169–185. https://doi.org/10.15625/1859-3097/17/2/8365

Issue

Section

Articles