A meshfree-based topology optimization approach without calculation of sensitivity

Minh Ngoc Nguyen, Tinh Quoc Bui
Author affiliations

Authors

  • Minh Ngoc Nguyen Duy Tan Research Institute for Computational Engineering (DTRICE), Duy Tan University, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-2026-2310
  • Tinh Quoc Bui Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-W8-22, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

DOI:

https://doi.org/10.15625/0866-7136/16679

Keywords:

meshfree, RPIM, PTO, topology optimization, non-sensitivity

Abstract

This paper presents a novel topology optimization approach without calculation of sensitivity for the minimum compliance problems, based on the meshfree Radial Point Interpolation Method (RPIM). Relying on the algorithm of Proportional Topology Optimization (PTO), material is distributed using only information of the objective function (which is the elastic strain energy). Material properties are interpolated by the well-known Solid Isotropic Material with Penalization (SIMP) technique; however the pseudo density (design variables) are not defined on the element center as usually encountered in finite element-based approaches, but on integration points. Since no element exists in meshfree analysis, this would be a natural choice. More importantly, the number of integration points is in general larger than that of elements or that of nodes, resulting in higher resolution of the density field. The feasibility and efficiency of the proposed approach are demonstrated and discussed via several numerical examples.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, (2), (1988), pp. 197–224. DOI: https://doi.org/10.1016/0045-7825(88)90086-2

O. Sigmund. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21, (2), (2001), pp. 120–127. DOI: https://doi.org/10.1007/s001580050176

W. Zuo and K. Saitou. Multi-material topology optimization using ordered SIMP interpolation. Structural and Multidisciplinary Optimization, 55, (2), (2016), pp. 477–491. DOI: https://doi.org/10.1007/s00158-016-1513-3

O. M. Querin, G. P. Steven, and Y. M. Xie. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations, 15, (8), (1998), pp. 1031–1048. DOI: https://doi.org/10.1108/02644409810244129

Y. Tang, A. Kurtz, and Y. F. Zhao. Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing. Computer-Aided Design, 69, (2015), pp. 91–101. DOI: https://doi.org/10.1016/j.cad.2015.06.001

M. Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192, (2003), pp. 227–246. DOI: https://doi.org/10.1016/S0045-7825(02)00559-5

A. Takezawa, S. Nishiwaki, and M. Kitamura. Shape and topology optimization based on the phase field method and sensitivity analysis. Journal of Computational Physics, 229, (7), (2010), pp. 2697–2718. DOI: https://doi.org/10.1016/j.jcp.2009.12.017

E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund. Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43, (1), (2010), pp. 1–16. DOI: https://doi.org/10.1007/s00158-010-0594-7

O. Sigmund and J. Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 16, (1998), pp. 68–75. DOI: https://doi.org/10.1007/BF01214002

Y. Wang, Z. Luo, J. Wu, and N. Zhang. Topology optimization of compliant mechanisms using element-free Galerkin method. Advances in Engineering Software, 85, (2015), pp. 61–72. DOI: https://doi.org/10.1016/j.advengsoft.2015.03.001

S. F. Rahmatalla and C. C. Swan. A Q4/Q4 continuum structural topology optimization implementation. Structural and Multidisciplinary Optimization, 27, (1-2), (2004), pp. 130–135. DOI: https://doi.org/10.1007/s00158-003-0365-9

J. K. Guest, J. H. Prévost, and T. Belytschko. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61, (2), (2004), pp. 238–254. DOI: https://doi.org/10.1002/nme.1064

M. Cui, H. Chen, J. Zhou, and F. Wang. A meshless method for multi-material topology optimization based on the alternating active-phase algorithm. Engineering with Computers, 33, (4), (2017), pp. 871–884. DOI: https://doi.org/10.1007/s00366-017-0503-4

J. Zhang, S.Wang, G. Zhou, S. Gong, and S. Yin. Topology optimization of thermal structure for isotropic and anisotropic materials using the element-free Galerkin method. Engineering Optimization, 52, (7), (2019), pp. 1097–1118. DOI: https://doi.org/10.1080/0305215X.2019.1636979

A. Neofytou, R. Picelli, T.-H. Huang, J.-S. Chen, and H. A. Kim. Level set topology optimization for design-dependent pressure loads using the reproducing kernel particle method. Structural and Multidisciplinary Optimization, 61, (5), (2020), pp. 1805–1820. DOI: https://doi.org/10.1007/s00158-020-02549-9

A. Neofytou, T.-H. Huang, S. Kambampati, R. Picelli, J.-S. Chen, and H. A. Kim. Level set topology optimization with nodally integrated reproducing kernel particle method. Computer Methods in Applied Mechanics and Engineering, 385, (2021). DOI: https://doi.org/10.1016/j.cma.2021.114016

G. R. Liu. Meshfree Methods: Moving Beyond the Finite Element Method. Taylor and Francis, second edition, (2010).

G.-C. Luh, C.-Y. Lin, and Y.-S. Lin. A binary particle swarm optimization for continuum structural topology optimization. Applied Soft Computing, 11, (2), (2011), pp. 2833–2844. DOI: https://doi.org/10.1016/j.asoc.2010.11.013

O. Sigmund. On the usefulness of non-gradient approaches in topology optimization. Structural and Multidisciplinary Optimization, 43, (5), (2011), pp. 589–596. DOI: https://doi.org/10.1007/s00158-011-0638-7

E. Biyikli and A. C. To. Proportional topology optimization: A new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLOS ONE, 10, (12), (2015). DOI: https://doi.org/10.1371/journal.pone.0145041

M. N. Nguyen, N. T. Nguyen, and M. T. Tran. A non-gradient approach for three dimensional topology optimization. Vietnam Journal of Science and Technology, 59, (3), (2021), pp. 368–379. DOI: https://doi.org/10.15625/2525-2518/59/3/14996

B. Bochenek and K. Tajs-Zielinska. GOTICA - generation of optimal topologies by irregular cellular automata. Structural and Multidisciplinary Optimization, 55, (6), (2017), pp. 1989–2001. DOI: https://doi.org/10.1007/s00158-016-1614-z

J. Jia, D. Da, C.-L. Loh, H. Zhao, S. Yin, and J. Xu. Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata. Structural and Multidisciplinary Optimization, 62, (2), (2020), pp. 757–770. DOI: https://doi.org/10.1007/s00158-020-02533-3

J. G.Wang and G. R. Liu. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 54, (11), (2002), pp. 1623–1648. DOI: https://doi.org/10.1002/nme.489

T. Q. Bui, N. T. Nguyen, L. V. Lich, M. N. Nguyen, and T. T. Truong. Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods. Theoretical and Applied Fracture Mechanics, 96, (2018), pp. 642–657. DOI: https://doi.org/10.1016/j.tafmec.2017.10.005

T.-V. Vu, N.-H. Nguyen, A. Khosravifard, M. R. Hematiyan, S. Tanaka, and T. Q. Bui. A simple FSDT-based meshfree method for analysis of functionally graded plates. Engineering Analysis with Boundary Elements, 79, (2017), pp. 1–12. DOI: https://doi.org/10.1016/j.enganabound.2017.03.002

T. H. Nguyen, G. H. Paulino, J. Song, and C. H. Le. A computational paradigm for multiresolution topology optimization (MTOP). Structural and Multidisciplinary Optimization, 41, (4), (2009), pp. 525–539. DOI: https://doi.org/10.1007/s00158-009-0443-8

J. Park and A. Sutradhar. A multi-resolution method for 3D multi-material topology optimization. Computer Methods in Applied Mechanics and Engineering, 285, (2015), pp. 571–586. DOI: https://doi.org/10.1016/j.cma.2014.10.011

T. Zegard and G. H. Paulino. Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization, 53, (1), (2015), pp. 175–192. DOI: https://doi.org/10.1007/s00158-015-1274-4

K. Zhang and G. Cheng. Three-dimensional high resolution topology optimization considering additive manufacturing constraints. Additive Manufacturing, 35, (2020). DOI: https://doi.org/10.1016/j.addma.2020.101224

Downloads

Published

30-03-2022

How to Cite

[1]
M. N. Nguyen and T. Q. Bui, A meshfree-based topology optimization approach without calculation of sensitivity, Vietnam J. Mech. 44 (2022) 45–58. DOI: https://doi.org/10.15625/0866-7136/16679.

Issue

Section

Research Article

Most read articles by the same author(s)