Estimation of heat transfer parameters by using trained POD-RBF and Grey Wolf Optimizer

Minh Ngoc Nguyen, Nha Thanh Nguyen, Thien Tich Truong
Author affiliations

Authors

  • Minh Ngoc Nguyen Ho Chi Minh City University of Technology - Vietnam National University Ho Chi Minh City, Vietnam
  • Nha Thanh Nguyen Ho Chi Minh City University of Technology - Vietnam National University Ho Chi Minh City , Vietnam
  • Thien Tich Truong Ho Chi Minh City University of Technology - Vietnam National University Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/15015

Keywords:

inverse analysis, Grey Wolf Optimizer, heat transfer parameters identification, Proper Orthogonal Decomposition (POD), Radial Basis Function (RBF)

Abstract

The article presents a numerical model for estimation of heat transfer parameters, e.g. thermal conductivity and convective coefficient, in two-dimensional solid bodies under steady-state conduction. This inverse problem is stated as an optimization problem, in which input is reference temperature data and the output is the design variables, i.e. the thermal properties to be identified. The search for optimum design variables is conducted by using a recent heuristic method, namely Grey Wolf Optimizer. During the heuristic search, direct heat conduction problem has to be solved several times. The set of heat transfer parameters that lead to smallest error rate between computed temperature field and reference one is the optimum output of the inverse problem. In order to accelerate the process, the model order reduction technique Proper-Orthogonal-Decomposition (POD) is used. The idea is to express the direct solution (temperature field) as a linear combination of orthogonal basis vectors. Practically, a majority of the basis vectors can be truncated, without losing much accuracy. The amplitude of this reduced-order approximation is then further interpolated by Radial Basis Functions (RBF). The whole scheme, named as trained POD-RBF, is then used as a surrogate model to retrieve the heat transfer parameters.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. N. Ozisik and H. R. B. Orlande. Inverse heat transfer: fundamentals and applications. Taylor & Francis, (2000).

F. B. Liu. Inverse estimation of wall heat flux by using particle swarm optimization algorithm with Gaussian mutation. International Journal of Thermal Sciences, 54, (2012), pp. 62–69. https://doi.org/10.1016/j.ijthermalsci.2011.11.013.

H. L. Lee, W. J. Chang, W. L. Chen, and Y. C. Yang. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energy Conversion and Management, 57, (2012), pp. 1–7. https://doi.org/10.1016/j.enconman.2011.12.002.

F. Mohebbi, B. Evans, A. Shaw, and M. Sellier. An inverse analysis for determination of space-dependent heat flux in heat conduction problems in the presence of variable thermal conductivity. International Journal for Computational Methods in Engineering Science and Mechanics, 20, (3), (2019), pp. 229–241. https://doi.org/10.1080/15502287.2019.1615579.

A. E. Segall, D. Engels, and C. Drapaca. Inverse determination of thermal boundary conditions from transient surface temperatures and strains in slabs and tubes. Materials and Manufacturing Processes, 27, (8), (2012), pp. 860–868. https://doi.org/10.1080/10426914.2012.663130.

M. Ebrahimian, R. Pourgholi, M. Emamjome, and P. Reihani. A numerical solution of an inverse parabolic problem with unknown boundary conditions. Applied Mathematics and Computation, 189, (1), (2007), pp. 228–234. https://doi.org/10.1016/j.amc.2006.11.062.

H. L. Zhou, X. H. Zhao, B. Yu, H. L. Chen, and Z. Meng. Firefly algorithm combined with Newton method to identify boundary conditions for transient heat conduction problems. Numerical Heat Transfer, Part B: Fundamentals, 71, (3), (2017), pp. 253–269. https://doi.org/10.1080/10407790.2016.1277915.

F. Mohebbi and M. Sellier. Estimation of thermal conductivity, heat transfer coefficient, and heat flux using a three dimensional inverse analysis. International Journal of Thermal Sciences, 99, (2016), pp. 258–270. https://doi.org/10.1016/j.ijthermalsci.2015.09.002.

Z. Ostrowski, R. Białecki, and A. J. Kassab. Solving inverse heat conduction problems using trained POD-RBF network inverse method. Inverse Problems in Science and Engineering, 16, (1), (2008), pp. 39–54. https://doi.org/10.1080/17415970701198290.

C. Y. Yang. Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems. Applied Mathematical Modelling, 23, (6), (1999), pp. 469–478.

https://doi.org/10.1016/s0307-904x(98)10093-8.

R. Pourgholi, H. Dana, and S. H. Tabasi. Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach. Applied Mathematical Modelling, 38, (7-8), (2014), pp. 1948–1958. https://doi.org/10.1016/j.apm.2013.10.019.

R. Das and B. Kundu. Direct and inverse approaches for analysis and optimization of fins under sensible and latent heat load. International Journal of Heat and Mass Transfer, 124, (2018), pp. 331–343. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.059.

H.-L. Chen, B. Yu, H. L. Zhou, and Z. Meng. Improved cuckoo search algorithm for solving inverse geometry heat conduction problems. Heat Transfer Engineering, 40, (3-4), (2019), pp. 362–374. https://doi.org/10.1080/01457632.2018.1429060.

S. Mirjalili, S. M. Mirjalili, and A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 69, (2014), pp. 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

E. Emary, H. M. Zawbaa, and A. E. Hassanien. Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, (2016), pp. 371–381. https://doi.org/10.1016/j.neucom.2015.06.083.

S. Eswaramoorthy, N. Sivakumaran, and S. Sekaran. Grey wolf optimization based parameter selection for support vector machines. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, (2016). https://doi.org/10.1108/compel-09-2015-0337.

A. Lakum and V. Mahajan. Optimal placement and sizing of multiple active power filters in radial distribution system using grey wolf optimizer in presence of nonlinear distributed generation. Electric Power Systems Research, 173, (2019), pp. 281–290. https://doi.org/10.1016/j.epsr.2019.04.001.

X. Song, L. Tang, S. Zhao, X. Zhang, L. Li, J. Huang, and W. Cai. Grey wolf optimizer for parameter estimation in surface waves. Soil Dynamics and Earthquake Engineering, 75, (2015), pp. 147–157. https://doi.org/10.1016/j.soildyn.2015.04.004.

S. Zhang and Y. Zhou. Template matching using grey wolf optimizer with lateral inhibition. Optik, 130, (2017), pp. 1229–1243. https://doi.org/10.1016/j.ijleo.2016.11.173.

S. Zhang, Y. Zhou, Z. Li, and W. Pan. Grey wolf optimizer for unmanned combat aerial vehicle path planning. Advances in Engineering Software, 99, (2016), pp. 121–136. https://doi.org/10.1016/j.advengsoft.2016.05.015.

R. A. Białecki, A. J. Kassab, and A. Fic. Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. International Journal for Numerical Methods in Engineering, 62, (6), (2005), pp. 774–797. https://doi.org/10.1002/nme.1205.

A. Fic, R. A. Białecki, and A. J. Kassab. Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method. Numerical Heat Transfer, Part B: Fundamentals, 48, (2), (2005), pp. 103–124. https://doi.org/10.1080/10407790590935920.

X. Zhang and H. Xiang. A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems. International Journal of Heat and Mass Transfer, 84, (2015), pp. 729–739. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.008.

N. N. Minh, N. T. Nha, T. T. Thien, and B. Q. Tinh. Efficient numerical analysis of transient heat transfer by Consecutive-Interpolation and Proper Orthogonal Decomposition. Science and Technology Development Journal, 20, (K9), (2017), pp. 5–14. https://doi.org/10.32508/stdj.v20ik9.1671.

Z. Ostrowski, R. A. Białecki, and A. J. Kassab. Estimation of constant thermal conductivity by use of proper orthogonal decomposition. Computational Mechanics, 37, (1), (2005), pp. 52–59. https://doi.org/10.1007/s00466-005-0697-y.

C. A. Rogers, A. J. Kassab, E. A. Divo, Z. Ostrowski, and R. A. Bialecki. An inverse PODRBF network approach to parameter estimation in mechanics. Inverse Problems in Science and Engineering, 20, (5), (2012), pp. 749–767. https://doi.org/10.1080/17415977.2012.693080.

M. Bocciarelli, V. Buljak, C. K. S. Moy, S. P. Ringer, and G. Ranzi. An inverse analysis approach based on a POD direct model for the mechanical characterization of metallic materials. Computational Materials Science, 95, (2014), pp. 302–308. https://doi.org/10.1016/j.commatsci.2014.07.025.

S. Khatir and M. A. Wahab. Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm. Engineering Fracture Mechanics, 205, (2019), pp. 285–300. https://doi.org/10.1016/j.engfracmech.2018.09.032.

Z. M. Gao and J. Zhao. An improved grey wolf optimization algorithm with variable weights. Computational Intelligence and Neuroscience, 2019, (2019). https://doi.org/10.1155/2019/2981282.

A. Chatterjee. An introduction to the proper orthogonal decomposition. Current Science, (2000), pp. 808–817.

G. R. Liu. Meshfree methods: moving beyond the finite element method. Taylor & Francis, second edition, (2010).

C. H. Thai, V. N. V. Do, and H. Nguyen-Xuan. An improved Moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates. Engineering Analysis with Boundary Elements, 64, (2016), pp. 122–136. https://doi.org/10.1016/j.enganabound.2015.12.003.

S. U. Hamim and R. P. Singh. Taguchi-based design of experiments in training POD-RBF surrogate model for inverse material modelling using nanoindentation. Inverse Problems in Science and Engineering, 25, (3), (2017), pp. 363–381. https://doi.org/10.1080/17415977.2016.1161036.

C. Leyder, V. Dertimanis, A. Frangi, E. Chatzi, and G. Lombaert. Optimal sensor placement methods and metrics–comparison and implementation on a timber frame structure. Structure and Infrastructure Engineering, 14, (7), (2018), pp. 997–1010. https://doi.org/10.1080/15732479.2018.1438483.

D. Dinh-Cong, H. Dang-Trung, and T. Nguyen-Thoi. An efficient approach for optimal sensor placement and damage identification in laminated composite structures. Advances in Engineering Software, 119, (2018), pp. 48–59. https://doi.org/10.1016/j.advengsoft.2018.02.005.

Downloads

Published

27-12-2020

How to Cite

[1]
M. N. Nguyen, N. T. Nguyen and T. T. Truong, Estimation of heat transfer parameters by using trained POD-RBF and Grey Wolf Optimizer, Vietnam J. Mech. 42 (2020) 401–414. DOI: https://doi.org/10.15625/0866-7136/15015.

Issue

Section

Research Article