How Cs-137 dispersions due to atmospheric deposition to East Vietnam Sea: a hypothetical level 7 incident from the Fangchenggang Nuclear Power Plant (China)

Vu Duy Vinh, Nguyen Minh Hai, Nguyen Trong Ngo, Tran Quang Thien
Author affiliations

Authors

  • Vu Duy Vinh Institute of Marine Environment and Resources, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam https://orcid.org/0000-0002-4500-027X
  • Nguyen Minh Hai Institute of Marine Environment and Resources, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam
  • Nguyen Trong Ngo Dalat Nuclear Research Institute, Lam Dong, Vietnam
  • Tran Quang Thien Dalat Nuclear Research Institute, Lam Dong, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/18309

Keywords:

Delft3D, Fangchenggang, nuclear power plant, Cs-137, East Vietnam Sea, Tonkin Gulf.

Abstract

Only about 50 km from the Quang Ninh coastal area in Vietnam, the Fangchenggang Nuclear Power Plant (China) operation causes excellent concerns for the environment, especially the marine environment, if an incident occurs. Based on topographic and hydrometeorological data and assumptions about radiation release conditions when an incident occurs, the Delft3D-Part modeling system was set up to assess/forecast the effect of Cs-137 radioactive activity on the source of air deposition in the water environment of Vietnam. The results showed that the sources of the drop from the air significantly affected and caused a faster impact than direct radioactive sources after the incident. Under the influence of marine circulation, wind radioactive material after falling into the sea will quickly disperse and may affect the entire East Vietnam Sea after 3–6 months. The area with high radioactivity is concentrated mainly in the Tonkin Gulf and along the coast of Vietnam. Especially in the Gulf of Tonkin, the radioactivity can reach 300–1,200 Bq/m3 after the 5-day incident. The amount of radiation then gradually decreases to almost less than 100 Bq/m3 after one year and below 20 Bq/m3 after two years. According to depth, the amount of radioactive Cs-137 tends to shift between layers from the surface to the bottom: higher at first in the upper layers, then gradually decreasing and increasing in the lower layers. Radioactivity significantly reduced after two years of the incident but still exceeded QCVN 10: 2008/BTNMT.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Buesseler, K. O., Jayne, S. R., Fisher, N. S., Rypina, I. I., Baumann, H., Baumann, Z., Breier, C. F., Douglass, E. M., George, J., Macdonald, A. M., Miyamoto, H., Nishikawa, J., Pike, S. M., and Yoshida, S., 2012. Fukushima-derived radionuclides in the ocean and biota off Japan. Proceedings of the National Academy of Sciences, 109(16), 5984–5988. DOI: https://doi.org/10.1073/pnas.1120794109

Grossman, E., 2011. Radioactivity in the ocean: Diluted, but far from harmless. Yale Environment 360.

Periáñez, R., Bezhenar, R., Brovchenko, I., Duffa, C., Iosjpe, M., Jung, K. T., Kobayashi, T., Lamego, F., Maderich, V., Min, B. I., Nies, H., Osvath, I., Outola, I., Psaltaki, M., Suh, K. S., and de With, G., 2016. Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios. Science of the Total Environment, 569, 594–602. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.131

Jørgensen, S. E., and Bendoricchio, G., 2001. Fundamentals of ecological modelling, 21.

Jørgensen, S. E., and Fath, B. D., 2011. Fundamentals of ecological modelling: Applications in environmental management and research. Elsevier. DOI: https://doi.org/10.1016/B978-0-444-53567-2.00011-9

Monte, L., Perianez, R., Boyer, P., Smith, J. T., and Brittain, J. E., 2009. The role of physical processes controlling the behaviour of radionuclide contaminants in the aquatic environment: a review of state-of-the-art modelling approaches. Journal of Environmental Radioactivity, 100(9), 779–784. DOI: https://doi.org/10.1016/j.jenvrad.2008.05.006

Bulgakov, A. A., Konoplev, A. V., Kanivets, V. V., and Voitsekhovich, O. V., 2002. Modelling the long-term dynamics of radionuclides in rivers. Radioprotection, 37(C1), C1. DOI: https://doi.org/10.1051/radiopro/2002182

Hkanson, L., and Monte, L., 2003. Radioactivity in lakes and rivers. In Radioactivity in the Environment, 4, 147–200. DOI: https://doi.org/10.1016/S1569-4860(03)80062-1

Honda, M. C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., and Saino, T., 2012. Dispersion of artificial caesium-134 and-137 in the western North Pacific one month after the Fukushima accident. Geochemical Journal, 46(1), e1–e9. DOI: https://doi.org/10.2343/geochemj.1.0152

Behrens, E., Schwarzkopf, F. U., Lübbecke, J. F., and Böning, C. W., 2012. Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima. Environmental Research Letters, 7(3), 034004. DOI: https://doi.org/10.1088/1748-9326/7/3/034004

Dietze, H., and Kriest, I., 2012. 137Cs off Fukushima Dai-ichi, Japan–model based estimates of dilution and fate. Ocean Science, 8(3), 319–332. DOI: https://doi.org/10.5194/os-8-319-2012

Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., and Awaji, T., 2011. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. Journal of Nuclear Science and Technology, 48(11), 1349–1356. DOI: https://doi.org/10.3327/jnst.48.1349

Tsumune, D., Tsubono, T., Aoyama, M., and Hirose, K., 2012. Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. Journal of Environmental Radioactivity, 111, 100–108. DOI: https://doi.org/10.1016/j.jenvrad.2011.10.007

Estournel, C., Bosc, E., Bocquet, M., Ulses, C., Marsaleix, P., Winiarek, V., Osvath, I., Nguyen, C., Duhaut, T., Lyard, F., Michaud, H., and Auclair, F., 2012. Assessment of the amount of cesium‐137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. Journal of Geophysical Research: Oceans, 117(C11). DOI: https://doi.org/10.1029/2012JC007933

Kobayashi, T., Nagai, H., Chino, M., and Kawamura, H., 2013. Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations: Fukushima NPP Accident Related. Journal of Nuclear Science and Technology, 50(3), 255–264. DOI: https://doi.org/10.1080/00223131.2013.772449

Terada, H., Katata, G., Chino, M., and Nagai, H., 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. Journal of environmental radioactivity, 112, 141–154. DOI: https://doi.org/10.1016/j.jenvrad.2012.05.023

Kawamura, H., Kobayashi, T., Furuno, A., Usui, N., and Kamachi, M., 2014. Numerical simulation on the long-term variation of radioactive cesium concentration in the North Pacific due to the Fukushima disaster. Journal of environmental radioactivity, 136, 64–75. DOI: https://doi.org/10.1016/j.jenvrad.2014.05.005

Vinh, V. D., Hai, N. M., Ngo, N. T., and Thien, T. Q., 2020. Modelling the dispersion of radioactive Cs-137 on the Vietnamese seas due to the Fangchenggang Nuclear Power Plant accident. Vietnam Journal of Marine Science and Technology, 20(4B), 147–162. (in Vietnamese).

Minh, H. N., Duy, V. V., Trong, N. N., and Quang, T. T., 2023. Research for forecasting the effect of various meteorological-dynamic conditions on the possible spreading of Cs-137 radioactive substances in case a level 7 incident occurs from Fengcheng nuclear power plant (China). Vietnam Journal of Marine Science and Technology, 23(1), 39–55. DOI: https://doi.org/10.15625/1859-3097/15964

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J. L., Factor, J., Ingalls, S., Kim, S-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371. DOI: https://doi.org/10.1080/01490410903297766

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R., 2015. A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8), 331–345. DOI: https://doi.org/10.1002/2015EA000107

Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Picot, N., 2016. FES 2014, a new tidal model—Validation results and perspectives for improvements. In Proceedings of the ESA living planet symposium (pp. 9–13).

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y-T., Chuang, H-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E., 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. DOI: https://doi.org/10.1175/JCLI-D-12-00823.1

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., and Baranova, O. K., 2013. World Ocean Atlas 2013 version 2 (WOA13 V2), Volume 1: Temperature. NOAA National Centers for Environmental Information NOAA Atlas NESDIS, 73.

Vinh, V. D., Hai, N. M., and Thao, N. V., 2019. A 3D modeling of the hydrodynamic and wave conditions in the North Central coastal area. Vietnam Journal of Marine Science and Technology, 19, 49–61. (in Vietnamese).

Vinh, V. D., and Van Uu, D., 2013. The influence of wind and oceanographic factors on characteristics of suspended sediment transport in Bach Dang estuary. Vietnam Journal of Marine Science and Technology, 13(3), 216–226. (in Vietnamese). DOI: https://doi.org/10.15625/1859-3097/13/3/3526

Vinh, V. D., Lan, T. D., Tu, T. A., and Anh, N. T. K., 2014. Simulation of characteristic of morphological change in the Me Kong estuary-coastal area. Vietnam Journal of Marine Science and Technology, 14, 31–42. (in Vietnamese)

Vinh, V. D., and Ouillon, S., 2014. Effects of Coriolis force on current and suspended sediment transport in the coastal zone of Red river delta. Vietnam Journal of Marine Science and Technology, 14(3), 219–228. (in Vietnamese). DOI: https://doi.org/10.15625/1859-3097/14/3/5159

Vinh, V. D., 2018. Impact of coastal engineering solutions on water exchange and sediment transport in Nai Lagoon (Ninh Thuan). Vietnam Journal of Marine Science and Technology, 17(4), 373–385. (in Vietnamese).

Vinh, V. D., and Lan, T. D., 2018. Influences of the wave conditions on the characteristics of sediments transport and morphological change in the Hai Phong coastal area. Vietnam Journal of Marine Science and Technology, 18(1), 10–26. (in Vietnamese).

Vinh, V. D., 2013. Possible impact in case of oil spill accident in Cua Luc Bay. Petrovietnam Journal, 04-2013, 56–65. (in Vietnamese).

Vinh, V. D., 2012. Simulation of oil spill in case of oil spill accident in Hai Phong coastal zone. PetroVietnam Journal, 03-2012, 48–56. (in Vietnamese).

Vinh, V. D., and Hai, N. M., 2020. Impacts of pollution discharges from Dinh Vu industrial zone on water quality in the Hai Phong coastal area. Vietnam Journal of Marine Science and Technology, 20(2), 173–187. (in Vietnamese). DOI: https://doi.org/10.15625/1859-3097/20/2/14071

Krause, P., Boyle, D. P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in geosciences, 5, 89–97. DOI: https://doi.org/10.5194/adgeo-5-89-2005

Nash, J. E., and Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282–290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6

Bent, E. J., Postma, L., Roelfzema, A., and Stive, R. J. H., 1991. Hydrodynamic and dispersion modelling of Swansea Bay, UK. Industrialised Embayments and Their Environmental Problems: A Case Study of Swansea Bay.

Wheatley, S., Sovacool, B., and Sornette, D., 2017. Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents. Risk analysis, 37(1), 99–115. DOI: https://doi.org/10.1111/risa.12587

Lai, Z., Chen, C., Beardsley, R., Lin, H., Ji, R., Sasaki, J., and Lin, J., 2013. Initial spread of 137Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf: A study using a high-resolution, global-coastal nested ocean model. Biogeosciences, 10(8), 5439–5449. DOI: https://doi.org/10.5194/bg-10-5439-2013

Rypina, I. I., Jayne, S. R., Yoshida, S., Macdonald, A. M., Douglass, E., and Buesseler, K., 2013. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison. Biogeosciences, 10(7), 4973–4990. DOI: https://doi.org/10.5194/bg-10-4973-2013

Charette, M. A., Breier, C. F., Henderson, P. B., Pike, S. M., Rypina, I. I., Jayne, S. R., and Buesseler, K. O., 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10(3), 2159–2167. DOI: https://doi.org/10.5194/bg-10-2159-2013

Long, N. Q., Cuong, L. D., Giap, T. V., Thang, D. V., Thanh, D. D., Khanh, N. V., and Anh, D. X., 2017. The dispersion of radioactive in the water from Fukushima to East Sea. Proceeding of the XII Vietnam Conference on Nuclear Science and Technology, Tra Trang, Khanh Hoa, 2-4/8/2017. (in Vietnamese).

Lin, X., Dong, C., Chen, D., Liu, Y., Yang, J., Zou, B., and Guan, Y., 2015. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Research Part I: Oceanographic Research Papers, 99, 46–64. DOI: https://doi.org/10.1016/j.dsr.2015.01.007

Zu, T., Gan, J., and Erofeeva, S. Y., 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(2), 137–154. DOI: https://doi.org/10.1016/j.dsr.2007.10.007

Hirose, K., 2016. Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years. Journal of Environmental Radioactivity, 157, 113–130. DOI: https://doi.org/10.1016/j.jenvrad.2016.01.011

Periáñez, R., 2005. Modelling the dispersion of radionuclides in the marine environment. Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/b138979

Kobayashi, T., Otosaka, S., Togawa, O., and Hayashi, K., 2007. Development of a non-conservative radionuclides dispersion model in the ocean and its application to surface cesium-137 dispersion in the Irish Sea. Journal of Nuclear Science and Technology, 44(2), 238–247. DOI: https://doi.org/10.1080/18811248.2007.9711278

Downloads

Published

21-05-2024

How to Cite

Vu, D. V., Nguyen , M. H., Nguyen, T. N., & Tran, Q. T. (2024). How Cs-137 dispersions due to atmospheric deposition to East Vietnam Sea: a hypothetical level 7 incident from the Fangchenggang Nuclear Power Plant (China). Vietnam Journal of Marine Science and Technology, 24(2), 99–115. https://doi.org/10.15625/1859-3097/18309

Issue

Section

Articles