Research for forecasting the effect of various meteorological-dynamic conditions on the possible spreading of Cs-137 radioactive substances in case a level 7 incident occurs from Fengcheng nuclear power plant (China)

Nguyen Minh Hai, Vu Duy Vinh, Nguyen Trong Ngo, Tran Quang Thien
Author affiliations


  • Nguyen Minh Hai Institute of Marine Resources and Environment, VAST, Vietnam
  • Vu Duy Vinh Institute of Marine Environment and Resources, VAST, Vietnam
  • Nguyen Trong Ngo Dalat Nuclear Research Institute, Lam Dong, Vietnam
  • Tran Quang Thien Dalat Nuclear Research Institute, Lam Dong, Vietnam



Delft3D, Fangchenggang, nuclear power plant, Cs-137 radioactive emission.


Because its location is quite close to the Vietnamese border, the future operation of the Fengcheng (Phong Thanh) nuclear power plant (NPP) can raise many concerns about the impact on the marine environment in case a serious incident occurs. Based on the Delft3D modeling toolkit, calculation scenarios to simulate the spreading of Cs-137 radioactive emission when a level 7 incident occurs at Phong Thanh NPP have been set up according to different dynamic/meteorological conditions presented at the time of incidents (during the northeast monsoon, transitional monsoon, or southwest monsoon) to assess/predict the possibility of radioactive emission and to spread, and their affecting the waters of Vietnam. The simulation results show that when a level 7 incident occurs from Phong Thanh NPP, the area of influence might be the entire East Sea after 3–6 months. The Gulf of Tonkin area would be contaminated with high radiation levels (300–350 Bq/m3) after about one month. The radiation would then gradually decrease to less than 150Bq/m3 after one year and below 30Bq/m3 after two years. The impacts of various dynamical and meteorological conditions on the ability to spread and disperse radioactive substances when an incident occurs are only evident in the early stages (up to 3 months after the incident). After this time, the contaminated area would cover almost the entire coastal strip of Vietnam due to a large amount of radiation, and the effects of different dynamic/meteorological conditions would be irregular.


Download data is not yet available.


Metrics Loading ...


Honda, M. C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., and Saino, T., 2012. Dispersion of artificial caesium-134 and-137 in the western North Pacific one month after the Fukushima accident. Geochemical Journal, 46(1), e1–e9. DOI:

Behrens, E., Schwarzkopf, F. U., Lübbecke, J. F., and Böning, C. W., 2012. Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima. Environmental Research Letters, 7(3), 034004. DOI:

Dietze, H., and Kriest, I., 2012. 137Cs off Fukushima Dai-ichi, Japan–model based estimates of dilution and fate. Ocean Science, 8(3), 319–332. DOI:

Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., and Awaji, T., 2011. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. Journal of Nuclear Science and Technology, 48(11), 1349–1356. DOI:

Tsumune, D., Tsubono, T., Aoyama, M., and Hirose, K., 2012. Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. Journal of environmental radioactivity, 111, 100–108. DOI:

Estournel, C., Bosc, E., Bocquet, M., Ulses, C., Marsaleix, P., Winiarek, V., Osvath, I., Nguyen, C., Duhaut, T., Lyard, F., Michaud, H., and Auclair, F., 2012. Assessment of the amount of cesium‐137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. Journal of Geophysical Research: Oceans, 117(C11). DOI:

Buesseler, K. O., Jayne, S. R., Fisher, N. S., Rypina, I. I., Baumann, H., Baumann, Z., Breier, C. F., Douglass, E. M., George, J., Macdonald, A. M., Miyamoto, H., Nishikawa, J., Pike, S. M., and Yoshida, S., 2012. Fukushima-derived radionuclides in the ocean and biota off Japan. Proceedings of the National Academy of Sciences, 109(16), 5984–5988. DOI:

Vinh, V. D., Hai, N. M., Ngo, N. T., and Thien, T. Q., 2020. Modelling the dispersion of radioactive Cs-137 on the Vietnamese seas due to the Fangchenggang (China) nuclear power plant accident. Vietnam Journal of Marine Science and Technology, 20(4B), 147–162. (in Vietnamese).

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371. DOI:

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R., 2015. A new digital bathymetric model of the world's oceans. Earth and space Science, 2(8), 331–345. DOI:

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y-T., Chuang, H-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E., 2014. The NCEP climate forecast system version 2. Journal of climate, 27(6), 2185–2208. DOI:

Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Picot, N., 2016. FES 2014, a new tidal model—Validation results and perspectives for improvements. In Proceedings of the ESA living planet symposium (pp. 9–13).

Egbert, G. D., and Erofeeva, S. Y., 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183–204. DOI:<0183:EIMOBO>2.0.CO;2

World Ocean Atlas, 2013. Version 2 (WOA13 V2). Available online:">

Vinh, V. D., Hai, N. M., and Thao, N. V., 2019. A 3D modeling of the hydrodynamics and waves condition in the North Central coastal area. Vietnam Journal of Marine Science and Technology, 19(3A), 19–31. (in Vietnamese).

Vinh, V. D., and Van Uu, D., 2013. The influence of wind and oceanographic factors on characteristics of suspended sediment transport in Bach Dang estuary. Vietnam Journal of Marine Science and Technology, 13(3), 216–226. (in Vietnamese). DOI:

Vinh, V. D., Lan, T. D., Tu, T. A., and Anh, N. T. K., 2014. Simulation of characteristic of morphological change in the Me Kong estuary-coastal area. Vietnam Journal of Marine Science and Technology, 14(3A), 31–42. (in Vietnamese).

Vinh, V. D., and Ouillon, S., 2014. Effects of Coriolis force on current and suspended sediment transport in the coastal zone of Red river delta. Vietnam Journal of Marine Science and Technology, 14(3), 219–228. (in Vietnamese). DOI:

Vinh, V. D., 2017. Impact of coastal engineering solutions on water exchange and sediment transport in Nai lagoon (Ninh Thuan). Vietnam Journal of Marine Science and Technology, 17(4), 373–385. (in Vietnamese).

Vinh, V. D., and Lan, T. D., 2018. Influences of the wave conditions on the characteristics of sediments transport and morphological change in the Hai Phong coastal area. Vietnam Journal of Marine Science and Technology, 18(1), 10–26. (in Vietnamese).

Vinh, V. D., 2013. Possible impact in case of oil spill accident in Cua Luc bay. Petrovietnam Journal, 04/2013, 56–65. (in Vietnamese).

Vinh, V. D., 2012. Simulation of oil spill in case of oil spill accident in Hai Phong coastal zone. PetroVietnam Journal, 03/2012, 48–56. (in Vietnamese).

Vu, D. V., Nguyen, M. H., and Do, G. K., 2020. Impacts of pollution discharges from Dinh Vu industrial zone on water quality in the Hai Phong coastal area. Vietnam Journal of Marine Science and Technology, 20(2), 173–187. (in Vietnamese). DOI:

Delft Hydraulics, 2016. Delft3D-FLOW User Manual; Delft 3D-WAVE User Manual, Delft 3D-PART User Manual.

Krause, P., Boyle, D. P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in geosciences, 5, 89–97. DOI:

Nash, J. E., 1970. River flow forecasting through conceptual models, Part IA discussion of principles. J. of Hyd., 10, 283–290. DOI:

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. DOI:

Bent, E. J., Postma, L., Roelfzema, A., and Stive, R. J. H., 1991. Hydrodynamic and dispersion modelling of Swansea Bay, UK. Industrialised Embayments and Their Environmental Problems: A Case Study of Swansea Bay.

Wheatley, S., Sovacool, B., and Sornette, D., 2017. Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents. Risk analysis, 37(1), 99–115. DOI:

Lai, Z., Chen, C., Beardsley, R., Lin, H., Ji, R., Sasaki, J., and Lin, J., 2013. Initial spread of 137 Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf: A study using a high-resolution, global-coastal nested ocean model. Biogeosciences, 10(8), 5439–5449. DOI:

Rypina, I. I., Jayne, S. R., Yoshida, S., Macdonald, A. M., Douglass, E., and Buesseler, K., 2013. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison. Biogeosciences, 10(7), 4973–4990. DOI:

Charette, M. A., Breier, C. F., Henderson, P. B., Pike, S. M., Rypina, I. I., Jayne, S. R., and Buesseler, K. O., 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10(3), 2159–2167. DOI:

Periáñez, R., Brovchenko, I., Duffa, C., Jung, K. T., Kobayashi, T., Lamego, F., Maderich, V., Min, B-I., Nies, H., Osvath, I., Psaltaki, M., and Suh, K. S., 2015. A new comparison of marine dispersion model performances for Fukushima Dai-ichi releases in the frame of IAEA MODARIA program. Journal of Environmental Radioactivity, 150, 247–269. DOI:

Kobayashi, T., Nagai, H., Chino, M., and Kawamura, H., 2013. Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations: Fukushima NPP Accident Related. Journal of Nuclear Science and Technology, 50(3), 255–264. DOI:

Margvelashvili, N., Maderich, V., Yuschenko, S., and Zheleznyak, M., 2002. 3-D numerical modelling of mud and radionuclide transport in the Chernobyl Cooling Pond and Dnieper-Boog Estuary. In Proceedings in Marine Science (Vol. 5, pp. 595–609). Elsevier. DOI:

Onishi, Y., Kurikami, H., and Yokuda, S. T., 2014. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT–Task 6, Subtask 2 (No. PNNL-23257). Pacific Northwest National Lab.(PNNL), Richland, WA (United States). DOI:

Perianez, R., Abril, J. M., and Garcia-Leon, M., 1996. Modelling the dispersion of non-conservative radionuclides in tidal waters—Part 1: Conceptual and mathematical model. Journal of Environmental Radioactivity, 31(2), 127–141. DOI:

Periáñez, R., 2005. Modelling the dispersion of radionuclides in the marine environment. Springer-Verlag Berlin Heidelberg. DOI:




How to Cite

Nguyen Minh, H., Vu Duy , V., Nguyen Trong, N., & Tran Quang, T. (2023). Research for forecasting the effect of various meteorological-dynamic conditions on the possible spreading of Cs-137 radioactive substances in case a level 7 incident occurs from Fengcheng nuclear power plant (China). Vietnam Journal of Marine Science and Technology, 23(1), 39–55.