Antibacterial activities and characteristics of some marine fungi strains isolated from Co To beach, Quang Ninh province

Le Thi Hong Minh, Nguyen Mai Anh, Vu Thi Quyen, Phi Thi Dao, Tran Van Hieu, Doan Thi Mai Huong, Pham Van Cuong, Vu Thi Thu Huyen
Author affiliations


  • Le Thi Hong Minh Institute of Marine Biochemistry, VAST, Vietnam
  • Nguyen Mai Anh Institute of Marine Biochemistry, VAST, Vietnam
  • Vu Thi Quyen Institute of Marine Biochemistry, VAST, Vietnam
  • Phi Thi Dao Institute of Marine Biochemistry, VAST, Vietnam
  • Tran Van Hieu Institute of Marine Biochemistry, VAST, Vietnam
  • Doan Thi Mai Huong Institute of Marine Biochemistry, VAST, Vietnam
  • Pham Van Cuong Institute of Marine Biochemistry, VAST, Vietnam
  • Vu Thi Thu Huyen Institute of Marine Biochemistry, VAST, Vietnam



Fungus, antimicrobial activity, bioassay, MIC, marine fungi, 18S rRNA.


Resistance to pathogenic bacteria may lead to serious health problems. Scientists found that discovering novel antimicrobial compounds is possible by exploring rarely investigated environments. Therefore, this work focused on isolating and identifying some fungal strains collected from the Co To sea. We tested whether such strains can produce compounds with vital activities, including antibacterial and antifungal. The antimicrobial activity of the marine fungi crude extracts was performed by the Bioassay method in a 96-well tray. The minimum inhibitory concentration (MIC) test results showed that 22 strains of marine fungi from samples with different geographic coordinates and 20/22 strains had antibacterial activity against at least two strains of microorganisms tested. The biological evaluation revealed that strains M257 and M238 inhibited 4 to 5 tested strains with MIC values equal to or lower than positive controls. Using a BLAST analysis in the GenBank database, morphological comparisons of the two selected candidate strains with similar known species and phylogenetic analyses were conducted on the 18S rRNA gene regions, and maximum likelihood revealed that M257 belongs to Talaromyces genus, and M238 belongs to Aspergillus penicillioides. The isolates were analyzed in a phylogenetic tree based on MegaX software.


Download data is not yet available.


Amend, A., Burgaud, G., Cunliffe, M., Edgcomb, V. P., Ettinger, C. L., Gutiérrez, M. H., Heitman, J., Hom, E. F. Y., Ianiri, G., Jones, A. C., Kagami, M., Picard, K. T., Quandt, C. A., Raghukumar, S., Riquelme, M., Stajich, J., Vargas-Muñiz, J., Walker, A. K., Yarden, O., and Gladfelter, A. S., 2019. Fungi in the marine environment: Open questions and unsolved problems. MBio, 10(2), e01189–18. DOI:

Richards, T. A., Jones, M. D., Leonard, G., and Bass, D., 2012. Marine fungi: their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522. DOI:

Silber, J., Kramer, A., Labes, A., and Tasdemir, D., 2016. From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Marine drugs, 14(7), 137. DOI:

Tarman, K., 2020. Marine Fungi as a Source of Natural Products. Encyclopedia of Marine Biotechnology, 4, 2147–2160. DOI:

Queirós, B., Barreira, J. C., Sarmento, A. C., and Ferreira, I. C., 2009. In search of synergistic effects in antioxidant capacity of combined edible mushrooms. International Journal of Food Sciences and Nutrition, 60(sup6), 160–172. DOI:

Zeghal, E., Vaksmaa, A., Vielfaure, H., Boekhout, T., and Niemann, H., 2021. The potential role of marine fungi in plastic degradation–a review. Frontiers in Marine Science, 8, 738877. DOI:">

Gomes, N. G., Madureira-Carvalho, Á., Dias-da-Silva, D., Valentao, P., and Andrade, P. B., 2021. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine & Pharmacotherapy, 140, 111756. DOI:

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., and Prinsep, M. R., 2019. Marine natural products. Natural Product Reports, 36(1), 122–173. DOI:

Papon, N., Copp, B. R., and Courdavault, V., 2022. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances, 54, 107871. DOI:

Orelle, C., Carlson, S., Kaushal, B., Almutairi, M. M., Liu, H., Ochabowicz, A., Quan, S., Pham, V. C., Squires, C. L., Murphy, B. T., and Mankin, A. S., 2013. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrobial agents and chemotherapy, 57(12), 5994–6004. DOI:

Ngo , T. D. N., Phan , T. H. T., Dinh, T. T., Yurchenko, A. N., Huynh , H. N. K., Le , D. H., Vo , T. D. T., Le, T. H., and Pham, D. T., 2023. Screening of antibacterial and antioxidant activities of marine fungi isolated from the North Sea of Vietnam. Vietnam Journal of Marine Science and Technology, 23(2), 189–201. DOI:

Ostrosky, E. A., Mizumoto, M. K., Lima, M. E., Kaneko, T. M., Nishikawa, S. O., and Freitas, B. R., 2008. Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais. Revista brasileira de Farmacognosia, 18, 301–307. DOI:

Durães, F., Szemerédi, N., Kumla, D., Pinto, M., Kijjoa, A., Spengler, G., and Sousa, E., 2021. Metabolites from marine-derived fungi as potential antimicrobial adjuvants. Marine drugs, 19(9), 475. DOI:

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. DOI:

Zhou, J., Feng, Z., Zhang, W., and Xu, J., 2022. Evaluation of the antimicrobial and cytotoxic potential of endophytic fungi extracts from mangrove plants Rhizophora stylosa and R. mucronata. Scientific Reports, 12(1), 2733. DOI:

Fukuda, T., Kurihara, Y., Kanamoto, A., and Tomoda, H., 2014. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. The Journal of Antibiotics, 67(8), 593–595. DOI:

Song, F., Ren, B., Chen, C., Yu, K., Liu, X., Zhang, Y., Yang, N., He, H., Liu, X., Dai, H., and Zhang, L., 2014. Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Applied Microbiology and Biotechnology, 98, 3753–3758. DOI:

Ding, L., Li, T., Liao, X., He, S., and Xu, S., 2018. Asperitaconic acids A–C, antibacterial itaconic acid derivatives produced by a marine-derived fungus of the genus Aspergillus. The Journal of Antibiotics, 71(10), 902–904. DOI:

Zhuang, Y., Teng, X., Wang, Y., Liu, P., Wang, H., Li, J., Li, G., and Zhu, W., 2011. Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron, 67(37), 7085–7089. DOI:

Wu, B., Ohlendorf, B., Oesker, V., Wiese, J., Malien, S., Schmaljohann, R., and Imhoff, J. F., 2015. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Marine biotechnology, 17, 110–119. DOI:

Liu, F., Cai, X. L., Yang, H., Xia, X. K., Guo, Z. Y., Yuan, J., Li, M. F., She, Z. G., and Lin, Y. C., 2010. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Medica, 76(02), 185–189. DOI:




How to Cite

Le Thi, H. M., Nguyen, M. A., Vu, T. Q., Phi , T. D., Tran , V. H., Doan Thi, M. H., Pham, V. C., & Vu Thi, T. H. (2023). Antibacterial activities and characteristics of some marine fungi strains isolated from Co To beach, Quang Ninh province. Vietnam Journal of Marine Science and Technology, 23(3), 311–320.




Most read articles by the same author(s)