Antibacterial activities and characteristics of some marine fungi strains isolated from Co To beach, Quang Ninh province
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/18252Keywords:
Fungus, antimicrobial activity, bioassay, MIC, marine fungi, 18S rRNA.Abstract
Resistance to pathogenic bacteria may lead to serious health problems. Scientists found that discovering novel antimicrobial compounds is possible by exploring rarely investigated environments. Therefore, this work focused on isolating and identifying some fungal strains collected from the Co To sea. We tested whether such strains can produce compounds with vital activities, including antibacterial and antifungal. The antimicrobial activity of the marine fungi crude extracts was performed by the Bioassay method in a 96-well tray. The minimum inhibitory concentration (MIC) test results showed that 22 strains of marine fungi from samples with different geographic coordinates and 20/22 strains had antibacterial activity against at least two strains of microorganisms tested. The biological evaluation revealed that strains M257 and M238 inhibited 4 to 5 tested strains with MIC values equal to or lower than positive controls. Using a BLAST analysis in the GenBank database, morphological comparisons of the two selected candidate strains with similar known species and phylogenetic analyses were conducted on the 18S rRNA gene regions, and maximum likelihood revealed that M257 belongs to Talaromyces genus, and M238 belongs to Aspergillus penicillioides. The isolates were analyzed in a phylogenetic tree based on MegaX software.
Downloads
Metrics
References
Amend, A., Burgaud, G., Cunliffe, M., Edgcomb, V. P., Ettinger, C. L., Gutiérrez, M. H., Heitman, J., Hom, E. F. Y., Ianiri, G., Jones, A. C., Kagami, M., Picard, K. T., Quandt, C. A., Raghukumar, S., Riquelme, M., Stajich, J., Vargas-Muñiz, J., Walker, A. K., Yarden, O., and Gladfelter, A. S., 2019. Fungi in the marine environment: Open questions and unsolved problems. MBio, 10(2), e01189–18. DOI: https://doi.org/10.1128/mBio.01189-18
Richards, T. A., Jones, M. D., Leonard, G., and Bass, D., 2012. Marine fungi: their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522. DOI: https://doi.org/10.1146/annurev-marine-120710-100802
Silber, J., Kramer, A., Labes, A., and Tasdemir, D., 2016. From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Marine drugs, 14(7), 137. DOI: https://doi.org/10.3390/md14070137
Tarman, K., 2020. Marine Fungi as a Source of Natural Products. Encyclopedia of Marine Biotechnology, 4, 2147–2160. DOI: https://doi.org/10.1002/9781119143802.ch96
Queirós, B., Barreira, J. C., Sarmento, A. C., and Ferreira, I. C., 2009. In search of synergistic effects in antioxidant capacity of combined edible mushrooms. International Journal of Food Sciences and Nutrition, 60(sup6), 160–172. DOI: https://doi.org/10.1080/09637480903153845
Zeghal, E., Vaksmaa, A., Vielfaure, H., Boekhout, T., and Niemann, H., 2021. The potential role of marine fungi in plastic degradation–a review. Frontiers in Marine Science, 8, 738877. https://doi.org/10.3389/fmars.2021.738877 DOI: https://doi.org/10.3389/fmars.2021.738877
Gomes, N. G., Madureira-Carvalho, Á., Dias-da-Silva, D., Valentao, P., and Andrade, P. B., 2021. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine & Pharmacotherapy, 140, 111756. DOI: https://doi.org/10.1016/j.biopha.2021.111756
Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., and Prinsep, M. R., 2019. Marine natural products. Natural Product Reports, 36(1), 122–173. DOI: https://doi.org/10.1039/C8NP00092A
Papon, N., Copp, B. R., and Courdavault, V., 2022. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances, 54, 107871. DOI: https://doi.org/10.1016/j.biotechadv.2021.107871
Orelle, C., Carlson, S., Kaushal, B., Almutairi, M. M., Liu, H., Ochabowicz, A., Quan, S., Pham, V. C., Squires, C. L., Murphy, B. T., and Mankin, A. S., 2013. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrobial agents and chemotherapy, 57(12), 5994–6004. DOI: https://doi.org/10.1128/AAC.01673-13
Ngo , T. D. N., Phan , T. H. T., Dinh, T. T., Yurchenko, A. N., Huynh , H. N. K., Le , D. H., Vo , T. D. T., Le, T. H., and Pham, D. T., 2023. Screening of antibacterial and antioxidant activities of marine fungi isolated from the North Sea of Vietnam. Vietnam Journal of Marine Science and Technology, 23(2), 189–201. DOI: https://doi.org/10.15625/1859-3097/17458
Ostrosky, E. A., Mizumoto, M. K., Lima, M. E., Kaneko, T. M., Nishikawa, S. O., and Freitas, B. R., 2008. Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais. Revista brasileira de Farmacognosia, 18, 301–307. DOI: https://doi.org/10.1590/S0102-695X2008000200026
Durães, F., Szemerédi, N., Kumla, D., Pinto, M., Kijjoa, A., Spengler, G., and Sousa, E., 2021. Metabolites from marine-derived fungi as potential antimicrobial adjuvants. Marine drugs, 19(9), 475. DOI: https://doi.org/10.3390/md19090475
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. DOI: https://doi.org/10.1093/molbev/msy096
Zhou, J., Feng, Z., Zhang, W., and Xu, J., 2022. Evaluation of the antimicrobial and cytotoxic potential of endophytic fungi extracts from mangrove plants Rhizophora stylosa and R. mucronata. Scientific Reports, 12(1), 2733. DOI: https://doi.org/10.1038/s41598-022-06711-9
Fukuda, T., Kurihara, Y., Kanamoto, A., and Tomoda, H., 2014. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. The Journal of Antibiotics, 67(8), 593–595. DOI: https://doi.org/10.1038/ja.2014.46
Song, F., Ren, B., Chen, C., Yu, K., Liu, X., Zhang, Y., Yang, N., He, H., Liu, X., Dai, H., and Zhang, L., 2014. Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Applied Microbiology and Biotechnology, 98, 3753–3758. DOI: https://doi.org/10.1007/s00253-013-5409-5
Ding, L., Li, T., Liao, X., He, S., and Xu, S., 2018. Asperitaconic acids A–C, antibacterial itaconic acid derivatives produced by a marine-derived fungus of the genus Aspergillus. The Journal of Antibiotics, 71(10), 902–904. DOI: https://doi.org/10.1038/s41429-018-0079-2
Zhuang, Y., Teng, X., Wang, Y., Liu, P., Wang, H., Li, J., Li, G., and Zhu, W., 2011. Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron, 67(37), 7085–7089. DOI: https://doi.org/10.1016/j.tet.2011.07.003
Wu, B., Ohlendorf, B., Oesker, V., Wiese, J., Malien, S., Schmaljohann, R., and Imhoff, J. F., 2015. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Marine biotechnology, 17, 110–119. DOI: https://doi.org/10.1007/s10126-014-9599-3
Liu, F., Cai, X. L., Yang, H., Xia, X. K., Guo, Z. Y., Yuan, J., Li, M. F., She, Z. G., and Lin, Y. C., 2010. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Medica, 76(02), 185–189. DOI: https://doi.org/10.1055/s-0029-1186047
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vietnam Academy of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.