Antimicrobial secondary metabolites from a marine-derived fungus Penicillium sp. OM07

Phi Thi Dao, Nguyen Thuy Linh, Vu Van Nam, Vu Thi Quyen, Nguyen Mai Anh, Vu Thi Thu Huyen, Le Thi Hong Minh, Pham Van Cuong, Doan Thi Mai Huong
Author affiliations

Authors

  • Phi Thi Dao Institute of Marine Biochemistry, VAST, Vietnam
  • Nguyen Thuy Linh Institute of Marine Biochemistry, VAST, Vietnam https://orcid.org/0000-0002-1817-0687
  • Vu Van Nam Institute of Marine Biochemistry, VAST, Vietnam
  • Vu Thi Quyen Institute of Marine Biochemistry, VAST, Vietnam
  • Nguyen Mai Anh Institute of Marine Biochemistry, VAST, Vietnam
  • Vu Thi Thu Huyen Institute of Marine Biochemistry, VAST, Vietnam https://orcid.org/0000-0002-3211-5254
  • Le Thi Hong Minh Institute of Marine Biochemistry, VAST, Vietnam
  • Pham Van Cuong Institute of Marine Biochemistry, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam
  • Doan Thi Mai Huong Institute of Marine Biochemistry, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam https://orcid.org/0000-0003-3252-870X

DOI:

https://doi.org/10.15625/1859-3097/19564

Keywords:

Penicillium, diketopiperazine dimer, antimicrobial activity, ergosterol, marine sediment.

Abstract

Eight compounds, diketopiperazine dimer WIN 64821 (1), ergosterol peroxide (2), ergosterol (3), 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (4), 3,4-dihydroxy-6,7-dimethyl-quinolin-2-carboxylic (5), norhaman (6), dihydrocitrinin (7), and phenol A acid (8) were isolated and characterized from the culture broth of the marine-derived Penicillium sp. OM07 strain was isolated from sediment collecting at Son Cha, Hue, Vietnam. Their structures were determined by analyses of MS and NMR data. All compounds were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Most showed high antifungal activity against Candida albicans ATCC10231 strain with MIC values ranging from 8 µg/mL to 256 µg/mL. All compounds had inhibitory activity against from one to three Gram-positive tested strains with MIC values from 64–256 µg/mL.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kodoli, R. S., Galatage, S. T., Killedar, S. G., Pishwikar, S. A., Habbu, P. V., and Bhagwat, D. A., 2021. Hepatoprotective activity of Phyllanthus niruri Linn. endophytes. Future Journal of Pharmaceutical Sciences, 7(1), 97. DOI: https://doi.org/10.1186/s43094-021-00243-1

Yang, X., Liu, J., Mei, J., Jiang, R., Tu, S., Deng, H., Liu, J., Yang, S., and Li, J., 2021. Origins, structures, and bioactivities of secondary metabolites from marine-derived Penicillium fungi. Mini Reviews in Medicinal Chemistry, 21(15), 2000–2019. DOI: https://doi.org/10.2174/1389557521666210217093517

Shaaban, R., Elnaggar, M. S., Khalil, N., and Singab, A. N. B., 2023. A comprehensive review on the medicinally valuable endosymbiotic fungi Penicillium chrysogenum. Archives of Microbiology, 205(6), 240. DOI: https://doi.org/10.1007/s00203-023-03580-2

Sikandar, A., Zhang, M., Wang, Y., Zhu, X., Liu, X., Fan, H., Xuan, Y., Chen, L., and Duan, Y., 2020. Mycochemical screening and analysis, antioxidant activity, and biochemical composition of fermentation strain Snef1216 (Penicillium chrysogenum). Journal of Analytical Methods in Chemistry, 2020. DOI: https://doi.org/10.1155/2020/3073906

Le, H. M. T., Do, Q. T., Doan, M. H. T., Vu, Q. T., Nguyen, M. A., Vu, T. H. T., Nguyen, H. D., Duong, N. T. T., Tran, M. H., Chau, V. M., and Pham, V. C., 2019. Chemical composition and biological activities of metabolites from the marine fungi Penicillium sp. isolated from sediments of Co To Island, Vietnam. Molecules, 24(21), 3830. DOI: https://doi.org/10.3390/molecules24213830

Anh, N. M., Huyen, V. T. T., Quyen, V. T., Dao, P. T., Quynh, D. T., Huong, D. T. M., Cuong, P. V., Dat, T. T. H., and Minh, L. T. H., 2024. Antimicrobial and cytotoxic secondary metabolites from a marine-derived fungus Penicillium citrinum VM6. Current Microbiology, 81(1), 32. DOI: https://doi.org/10.1007/s00284-023-03568-7

Andrews, J. M., 2001. Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy, 48(suppl_1), 5-16. DOI: https://doi.org/10.1093/jac/48.suppl_1.5

Mamedova, R. P., Agzamova, M. A., and Isaev, M. I., 2001. Triterpene glycosides of Astragalus and their genins. LXIII. Chemical transformation of cycloartanes. iv. Partial synthesis of trojanoside A. Chemistry of natural compounds, 37(6), 529–532.

Barrow, C. J., Cai, P., Snyder, J. K., Sedlock, D. M., Sun, H. H., and Cooper, R., 1993. WIN 64821, a new competitive antagonist to substance P, isolated from an Aspergillus species: structure determination and solution conformation. The Journal of Organic Chemistry, 58(22), 6016-6021. DOI: https://doi.org/10.1021/jo00074a031

Wada, M., Suzuki, H., Kato, M., Oikawa, H., Tsubouchi, A., and Oguri, H., 2019. Stereodivergent synthesis of bispyrrolidinoindoline alkaloidal scaffolds and generation of a lead candidate with stereospecific antiproliferative activity. ChemBioChem, 20(10), 1273–1281. DOI: https://doi.org/10.1002/cbic.201800815

Kaur, A., Raja, H. A., Darveaux, B. A., Chen, W. L., Swanson, S. M., Pearce, C. J., and Oberlies, N. H., 2015. New diketopiperazine dimer from a filamentous fungal isolate of Aspergillus sydowii. Magnetic resonance in chemistry: MRC, 53(8), 616. DOI: https://doi.org/10.1002/mrc.4254

Xu, J., Hu, Q., Ding, W., Wang, P., and Di, Y., 2018. New asymmetrical bispyrrolidinoindoline diketopiperazines from the marine fungus Aspergillus sp. DX4H. Natural product research, 32(7), 815–820. DOI: https://doi.org/10.1080/14786419.2017.1363752

Chang, Y. C., Hwang, T. L., Chao, C. H., and Sung, P. J., 2017. New marine sterols from a gorgonian Pinnigorgia sp. Molecules, 22(3), 393. DOI: https://doi.org/10.3390/molecules22030393

Seo, H. W., Hung, T. M., Na, M., Jung, H. J., Kim, J. C., Choi, J. S., Kim, J. H., Lee, H.-K., Lee, I. S., Bae, K. H., Hattori, M., and Min, B. S., 2009. Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity. Archives of Pharmacal Research, 32, 1573–1579. DOI: https://doi.org/10.1007/s12272-009-2109-x

Kawagishi, H., Katsumi, R., Sazawa, T., Mizuno, T., Hagiwara, T., and Nakamura, T., 1988. Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry, 27(9), 2777–2779. DOI: https://doi.org/10.1016/0031-9422(88)80662-9

Thi, Q. V., Tran, V. H., Mai, H. D. T., Le, C. V., Hong, M. L. T., Murphy, B. T., Chau, V. M., and Pham, V. C., 2016. Antimicrobial metabolites from a marine-derived actinomycete in Vietnam's East Sea. Natural Product Communications, 11(1), 1934578X1601100116. DOI: https://doi.org/10.1177/1934578X1601100116

Kamal, A., Tangella, Y., Manasa, K. L., Sathish, M., Srinivasulu, V., Chetna, J., and Alarifi, A., 2015. PhI (OAc) 2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I. Organic & biomolecular chemistry, 13(32), 8652–8662. DOI: https://doi.org/10.1039/C5OB00871A

Wang, Z. X., Xiang, J. C., Cheng, Y., Ma, J. T., Wu, Y. D., and Wu, A. X., 2018. Direct biomimetic synthesis of β-carboline alkaloids from two amino acids. The Journal of Organic Chemistry, 83(19), 12247–12254. DOI: https://doi.org/10.1021/acs.joc.8b01668

Haraguchi, H., Taniguchi, M., Tanaka, T., Oi, S., and Hashimoto, K., 1989. Citrinin, an electron acceptor having antifungal activity. Agricultural and biological chemistry, 53(6), 1741–1742. DOI: https://doi.org/10.1080/00021369.1989.10869532

Rödel, T., and Gerlach, H., 1995. Enantioselective synthesis of the polyketide antibiotic (3R, 4S)‐(−)‐citrinin. Liebigs Annalen, 1995(5), 885–888. DOI: https://doi.org/10.1002/jlac.1995199505129

Downloads

Published

21-05-2024

How to Cite

Phi, T. D., Nguyen, T. L., Vu, V. N., Vu, T. Q., Nguyen, M. A., Vu, T. T. H., Le, T. H. M., Pham, V. C., & Doan, T. M. H. (2024). Antimicrobial secondary metabolites from a marine-derived fungus <i>Penicillium</i> sp. OM07. Vietnam Journal of Marine Science and Technology, 24(2), 175–184. https://doi.org/10.15625/1859-3097/19564

Issue

Section

Articles

Most read articles by the same author(s)