Ergostane steroids from Aspergillus sp. M904 in Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/22128Keywords:
Aspergillus, steroid, ergostane, antimicrobial.Abstract
Seven ergostane steroids were isolated from the cultures of Aspergillus sp. M904, an endophytic fungus isolated from the marine sediment sample collected at a depth of ten meters in Binh Dinh, Vietnam. These compounds include 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7α-diol (1), 5α,6α-epoxy-(22E,24R)-ergosta-8(9),22-diene-3β,7α-diol (2), ergosterol (3), ergosterol peroxide (4), 3β,5α,6α-trihydroxy-ergosta-7,22-diene (5), 3β,5α,9α-trihydroxy-ergosta-7,22-diene-6-one (6), 3β-hydroxy-5α,9α-epoxy-ergosta-7,22-dien-6-one (7). Their structures were identified through MS and NMR data analyses. All compounds were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Compounds 1–7 had inhibitory activity against from one to six tested strains with MIC values from 64–256 µg/mL.
Downloads
Metrics
References
[1] Chen, S., Cai, R., Liu, Z., Cui, H., and She, Z., 2022. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Natural product reports, 39(3), 560–595. DOI: https://doi.org/10.1039/D1NP00041A
[2] Shin, H. J., 2020. Natural products from marine fungi. Marine drugs, 18(5), 230. DOI: https://doi.org/10.3390/md18050230
[3] Lombardi, V. R., Carrera, I., Corzo, L., and Cacabelos, R., 2019. Role of bioactive lipofishins in prevention of inflammation and colon cancer. Seminars in Cancer Biology, 56, 175–184. DOI: https://doi.org/10.1016/j.semcancer.2017.11.012
[4] Millward, M., Mainwaring, P., Mita, A., Federico, K., Lloyd, G. K., Reddinger, N., Nawrocki, S., Mita, M., and Spear, M. A., 2012. Phase 1 study of the novel vascular disrupting agent plinabulin (NPI-2358) and docetaxel. Investigational New Drugs, 30, 1065–1073. DOI: https://doi.org/10.1007/s10637-011-9642-4
[5] Negi, B., Kumar, D., and S Rawat, D., 2017. Marine peptides as anticancer agents: A remedy to mankind by nature. Current Protein and Peptide Science, 18(9), 885–904. DOI: https://doi.org/10.2174/1389203717666160724200849
[6] Wang, H. N., Sun, S. S., Liu, M. Z., Yan, M. C., Liu, Y. F., Zhu, Z., and Zhang, Z., 2022. Natural bioactive compounds from marine fungi (2017–2020). Journal of Asian natural products research, 24(3), 203–230. DOI: https://doi.org/10.1080/10286020.2021.1947254
[7] Liu, Z., Zhao, J. Y., Sun, S. F., Li, Y., and Liu, Y. B., 2020. Fungi: outstanding source of novel chemical scaffolds. Journal of Asian natural products research, 22(2), 99–120. DOI: https://doi.org/10.1080/10286020.2018.1488833
[8] Wang, K. W., and Ding, P., 2018. New bioactive metabolites from the marine-derived fungi Aspergillus. Mini Reviews in Medicinal Chemistry, 18(13), 1072–1094. DOI: https://doi.org/10.2174/1389557518666180305160856
[9] Hadacek, F., and Greger, H., 2000. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 11(3), 137–147. DOI: https://doi.org/10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I
[10] Chang, Y. C., Hwang, T. L., Chao, C. H., and Sung, P. J., 2017. New marine sterols from a gorgonian Pinnigorgia sp. Molecules, 22(3), 393. DOI: https://doi.org/10.3390/molecules22030393
[11] Sright, J. L. C., McInnes, A. G., Shimizu, S., Smith, D. G., Walter, J. A., Idler, D., and Khalil, W., 1978. Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. Canadian Journal of Chemistry, 56(14), 1898–1903. DOI: https://doi.org/10.1139/v78-308
[12] Kwon, H. C., Zee, S. D., Cho, S. Y., Choi, S. U., and Lee, K. R., 2002. Cytotoxic ergosterols from Paecilomyces sp. J300. Archives of pharmacal research, 25, 851–855. DOI: https://doi.org/10.1007/BF02977003
[13] Luo, X., Li, F., Shinde, P. B., Hong, J., Lee, C. O., Im, K. S., and Jung, J. H., 2006. 26, 27-cyclosterols and other polyoxygenated sterols from a marine sponge Topsentia sp. Journal of natural products, 69(12), 1760–1768. DOI: https://doi.org/10.1021/np0604026
[14] Seo, H. W., Hung, T. M., Na, M., Jung, H. J., Kim, J. C., Choi, J. S., Kim, J. H., Lee, H. K., Lee, I., Bae, K., Hattori, M., and Min, B. S., 2009. Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity. Archives of Pharmacal Research, 32, 1573–1579. DOI: https://doi.org/10.1007/s12272-009-2109-x
[15] Bok, J. W., Lermer, L., Chilton, J., Klingeman, H. G., and Towers, G. N., 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 51(7), 891–898. DOI: https://doi.org/10.1016/S0031-9422(99)00128-4
[16] Zhang, Y. M., Li, H. Y., Hu, C., Sheng, H. F., Zhang, Y., Lin, B. R., and Zhou, G. X., 2016. Ergosterols from the culture broth of marine Streptomyces anandii H41-59. Marine Drugs, 14(5), 84. DOI: https://doi.org/10.3390/md14050084
[17] Piccialli, V., and Sica, D., 1987. Four new trihydroxylated sterols from the sponge Spongionella gracilis. Journal of Natural Products, 50(5), 915–920. DOI: https://doi.org/10.1021/np50053a024
[18] Valisolalao, J., Luu, B., and Ourisson, G., 1983. Steroides cytotoxiques de Polyporus versicolor. Tetrahedron, 39(17), 2779–2785. DOI: https://doi.org/10.1016/S0040-4020(01)82446-7
[19] Yu, F. X., Li, Z., Chen, Y., Yang, Y. H., Li, G. H., and Zhao, P. J., 2017. Four new steroids from the endophytic fungus Chaetomium sp. M453 derived of Chinese herbal medicine Huperzia serrata. Fitoterapia, 117, 41–46. DOI: https://doi.org/10.1016/j.fitote.2016.12.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vietnam Academy of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.