Ergostane steroids from Aspergillus sp. M904 in Vietnam

Trinh Thi Thanh Van, Nguyen Mai Anh, Vu Van Nam, Nguyen Thuy Linh, Le Thi Hong Minh, Brian T. Murphy, Doan Thi Mai Huong, Pham Van Cuong
Author affiliations

Authors

  • Trinh Thi Thanh Van Institute of Marine Biochemistry, VAST, Vietnam
  • Nguyen Mai Anh Institute of Marine Biochemistry, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam
  • Vu Van Nam Institute of Marine Biochemistry, VAST, Vietnam
  • Nguyen Thuy Linh Institute of Marine Biochemistry, VAST, Vietnam
  • Le Thi Hong Minh Institute of Marine Biochemistry, VAST, Vietnam
  • Brian T. Murphy University of Illinois Chicago, Illinois 60612-7231, USA
  • Doan Thi Mai Huong Institute of Marine Biochemistry, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam
  • Pham Van Cuong Institute of Marine Biochemistry, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/22128

Keywords:

Aspergillus, steroid, ergostane, antimicrobial.

Abstract

Seven ergostane steroids were isolated from the cultures of Aspergillus sp. M904, an endophytic fungus isolated from the marine sediment sample collected at a depth of ten meters in Binh Dinh, Vietnam. These compounds include 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7α-diol (1), 5α,6α-epoxy-(22E,24R)-ergosta-8(9),22-diene-3β,7α-diol (2), ergosterol (3), ergosterol peroxide (4), 3β,5α,6α-trihydroxy-ergosta-7,22-diene (5), 3β,5α,9α-trihydroxy-ergosta-7,22-diene-6-one (6), 3β-hydroxy-5α,9α-epoxy-ergosta-7,22-dien-6-one (7). Their structures were identified through MS and NMR data analyses. All compounds were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Compounds 1–7 had inhibitory activity against from one to six tested strains with MIC values from 64–256 µg/mL.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Chen, S., Cai, R., Liu, Z., Cui, H., and She, Z., 2022. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Natural product reports, 39(3), 560–595. DOI: https://doi.org/10.1039/D1NP00041A

[2] Shin, H. J., 2020. Natural products from marine fungi. Marine drugs, 18(5), 230. DOI: https://doi.org/10.3390/md18050230

[3] Lombardi, V. R., Carrera, I., Corzo, L., and Cacabelos, R., 2019. Role of bioactive lipofishins in prevention of inflammation and colon cancer. Seminars in Cancer Biology, 56, 175–184. DOI: https://doi.org/10.1016/j.semcancer.2017.11.012

[4] Millward, M., Mainwaring, P., Mita, A., Federico, K., Lloyd, G. K., Reddinger, N., Nawrocki, S., Mita, M., and Spear, M. A., 2012. Phase 1 study of the novel vascular disrupting agent plinabulin (NPI-2358) and docetaxel. Investigational New Drugs, 30, 1065–1073. DOI: https://doi.org/10.1007/s10637-011-9642-4

[5] Negi, B., Kumar, D., and S Rawat, D., 2017. Marine peptides as anticancer agents: A remedy to mankind by nature. Current Protein and Peptide Science, 18(9), 885–904. DOI: https://doi.org/10.2174/1389203717666160724200849

[6] Wang, H. N., Sun, S. S., Liu, M. Z., Yan, M. C., Liu, Y. F., Zhu, Z., and Zhang, Z., 2022. Natural bioactive compounds from marine fungi (2017–2020). Journal of Asian natural products research, 24(3), 203–230. DOI: https://doi.org/10.1080/10286020.2021.1947254

[7] Liu, Z., Zhao, J. Y., Sun, S. F., Li, Y., and Liu, Y. B., 2020. Fungi: outstanding source of novel chemical scaffolds. Journal of Asian natural products research, 22(2), 99–120. DOI: https://doi.org/10.1080/10286020.2018.1488833

[8] Wang, K. W., and Ding, P., 2018. New bioactive metabolites from the marine-derived fungi Aspergillus. Mini Reviews in Medicinal Chemistry, 18(13), 1072–1094. DOI: https://doi.org/10.2174/1389557518666180305160856

[9] Hadacek, F., and Greger, H., 2000. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 11(3), 137–147. DOI: https://doi.org/10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I

[10] Chang, Y. C., Hwang, T. L., Chao, C. H., and Sung, P. J., 2017. New marine sterols from a gorgonian Pinnigorgia sp. Molecules, 22(3), 393. DOI: https://doi.org/10.3390/molecules22030393

[11] Sright, J. L. C., McInnes, A. G., Shimizu, S., Smith, D. G., Walter, J. A., Idler, D., and Khalil, W., 1978. Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. Canadian Journal of Chemistry, 56(14), 1898–1903. DOI: https://doi.org/10.1139/v78-308

[12] Kwon, H. C., Zee, S. D., Cho, S. Y., Choi, S. U., and Lee, K. R., 2002. Cytotoxic ergosterols from Paecilomyces sp. J300. Archives of pharmacal research, 25, 851–855. DOI: https://doi.org/10.1007/BF02977003

[13] Luo, X., Li, F., Shinde, P. B., Hong, J., Lee, C. O., Im, K. S., and Jung, J. H., 2006. 26, 27-cyclosterols and other polyoxygenated sterols from a marine sponge Topsentia sp. Journal of natural products, 69(12), 1760–1768. DOI: https://doi.org/10.1021/np0604026

[14] Seo, H. W., Hung, T. M., Na, M., Jung, H. J., Kim, J. C., Choi, J. S., Kim, J. H., Lee, H. K., Lee, I., Bae, K., Hattori, M., and Min, B. S., 2009. Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity. Archives of Pharmacal Research, 32, 1573–1579. DOI: https://doi.org/10.1007/s12272-009-2109-x

[15] Bok, J. W., Lermer, L., Chilton, J., Klingeman, H. G., and Towers, G. N., 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 51(7), 891–898. DOI: https://doi.org/10.1016/S0031-9422(99)00128-4

[16] Zhang, Y. M., Li, H. Y., Hu, C., Sheng, H. F., Zhang, Y., Lin, B. R., and Zhou, G. X., 2016. Ergosterols from the culture broth of marine Streptomyces anandii H41-59. Marine Drugs, 14(5), 84. DOI: https://doi.org/10.3390/md14050084

[17] Piccialli, V., and Sica, D., 1987. Four new trihydroxylated sterols from the sponge Spongionella gracilis. Journal of Natural Products, 50(5), 915–920. DOI: https://doi.org/10.1021/np50053a024

[18] Valisolalao, J., Luu, B., and Ourisson, G., 1983. Steroides cytotoxiques de Polyporus versicolor. Tetrahedron, 39(17), 2779–2785. DOI: https://doi.org/10.1016/S0040-4020(01)82446-7

[19] Yu, F. X., Li, Z., Chen, Y., Yang, Y. H., Li, G. H., and Zhao, P. J., 2017. Four new steroids from the endophytic fungus Chaetomium sp. M453 derived of Chinese herbal medicine Huperzia serrata. Fitoterapia, 117, 41–46. DOI: https://doi.org/10.1016/j.fitote.2016.12.012

Downloads

Published

10-12-2024

How to Cite

Trinh, T. T. V., Nguyen, M. A., Vu, V. N., Nguyen, T. L., Le, T. H. M., Murphy, B. T., Doan, T. M. H., & Pham, V. C. (2024). Ergostane steroids from <i>Aspergillus</i> sp. M904 in Vietnam. Vietnam Journal of Marine Science and Technology, 24(4), 419–428. https://doi.org/10.15625/1859-3097/22128

Issue

Section

Articles

Most read articles by the same author(s)