Effect of environmental parameters on the content and sugar composition of sulfated polysaccharides in some tropical seagrass
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/18053Keywords:
Functional groups, salinity, seagrass, sulfated polysaccharides.Abstract
Seagrasses are a paraphyletic group of marine angiosperms that evolved three to four times from land plants and returned to the sea. Halophila ovalis, Thalassia hemprichii and Enhalus acoroides (Hydrocharitaceae) are species that can occur in wide salinity ranges. Sulfated polysaccharides (SPs) comprise a complex group of macromolecules with many critical biological functions. We assume that SP may play a role in salt tolerance in seagrass. In this study, three seagrass species collected in both rainy and dry seasons from the fields were analyzed to determine the total SP contents and different functional groups of SP. Quantification of total SP was done by photometric assays. High-performance anion-exchange chromatography with Pulsed Electrochemical Detection (HPAEC) determined different functional groups of SPs. The results indicated higher total SP contents in seagrass are present in plants at higher salinities and environmental temperatures. The percent of functional groups of SPs are present in the following order: glucose > galactose > arabinose > mannose > rhamnose > fucose. The order is not different between the two seasons.
Downloads
Metrics
References
Les, D. H., Cieland, M. A., and Vvaycott, M., 1997. Phylogenetic Studies in Alismatidae, II: Evolution of Marine Angiosperms (Seagrasses) and Hydrophily. Systematic Botany, 22(3), 443–463. DOI: https://doi.org/10.2307/2419820
Papenbrock, J., 2012. Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special?. ISRN Botany, 2012(7), 103892. DOI: https://doi.org/10.5402/2012/103892
Papazian, S., Parrot, D., Burýšková, B., Weinberger, F., and Tasdemir, D., 2019. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Scientific Reports, 9(1), 3323. DOI: https://doi.org/10.1038/s41598-019-39212-3
Zidorn, C., 2016. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry, 124, 5–28. DOI: https://doi.org/10.1016/j.phytochem.2016.02.004
Lee, H., Golicz, A. A., Bayer, P. E., Severn-Ellis, A. A., Chan, C. K. K., Batley, J., Kendrick, G. A., and Edwards, D., 2018. Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. Journal of experimental botany, 69(15), 3689–3702. DOI: https://doi.org/10.1093/jxb/ery147
Olsen, J. L., Rouzé, P., Verhelst, B., Lin, Y. C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., Michel, G., Kersting, A., Lauritano, C., Lohaus, R., Töpel, M., Tonon, T., Vanneste, K., Amirebrahimi, M., Brakel, J., Boström, C., Chovatia, M., Grimwood, J., Jenkins, J. W., Jueterbock, A., Mraz, A., Stam, W. T., Tice, H., Bornberg-Bauer, E., Green, P. J., Pearson, G. A., Procaccini, G., Duarte, C. M., Schmutz, J., Reusch, T. B. H., and Van de Peer, Y., 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530(7590), 331–335. DOI: https://doi.org/10.1038/nature16548
Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J. M., Badger, J. H., Beszteri, B., Billiau, K., Bonnet, E., Bothwell, J. H., Bowler, C., Boyen, C., Brownlee, C., Carrano, C. J., Charrier, B., Cho, G. Y., Coelho, S. M., Collén, J., Corre, E., Silva, C. D., Delage, L., Delaroque, N., Dittami, S. M., Doulbeau, S., Elias, M., Farnham, G., Gachon, C. M. M., Gschloessl, B., Heesch, S., Jabbari, K., Jubin, C., Kawai, H., Kimura, K., Kloareg, B., Küpper, F. C., Lang, D., Bail, A. L., Leblanc, C., Lerouge, P., Lohr, M., Lopez, P. J., Martens, C., Maumus, F., Michel, G., Miranda-Saavedra, D., Morales, J., Moreau, H., Motomura, T., Nagasato, C., Napoli, C. A., Nelson, D. R., Nyvall-Collén, P., Peters, A. F., Pommier, C., Potin, P., Poulain, J., Quesneville, H., Read, B., Rensing, S. A., Ritter, A., Rousvoal, S., Samanta, M., Samson, G., Schroeder, D. C., Ségurens, B., Strittmatter, M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y., and Wincker, P., 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298), 617–621. DOI: https://doi.org/10.1038/nature09016
Nguyen, X. V., Klein, M., Riemenschneider, A., and Papenbrock, J., 2014. Distinctive features and role of sulfur-containing compounds in marine plants, seaweeds, seagrasses and halophytes, from an evolutionary point of view. Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation, 299–312. DOI: https://doi.org/10.1007/978-94-007-7411-7_21
Patel, S., 2012. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech, 2(3), 171–185. DOI: https://doi.org/10.1007/s13205-012-0061-9
Coombe, D. R., and Parish, C. R., 1988. Sulfated Polysaccharide-Mediated Sponge Cell Aggregation: The Clue to Invertebrate Self/Nonself-Recognition?. In Invertebrate historecognition (pp. 31–54). Boston, MA: Springer US. doi: 10.1007/978-1-4613-1053-2_3 DOI: https://doi.org/10.1007/978-1-4613-1053-2_3
Yamada, S., Sugahara, K., and Özbek, S., 2011. Evolution of glycosaminoglycans: Comparative biochemical study. Communicative & integrative biology, 4(2), 150–158. DOI: https://doi.org/10.4161/cib.4.2.14547
Patel, S., 2018. Seaweed-derived sulfated polysaccharides: scopes and challenges in implication in health care. In Bioactive seaweeds for food applications (pp. 71–93). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-813312-5.00004-2
Aquino, R. S., Landeira-Fernandez, A. M., Valente, A. P., Andrade, L. R., and Mourao, P. A., 2005. Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiology, 15(1), 11-20. DOI: https://doi.org/10.1093/glycob/cwh138
Dantas-Santos, N., Gomes, D. L., Costa, L. S., Cordeiro, S. L., Costa, M. S. S. P., Trindade, E. S., Franco, C. R. C., Scortecci, K. C., Leite, E. L., and Rocha, H. A. O., 2012. Freshwater plants synthesize sulfated polysaccharides: heterogalactans from water hyacinth (Eicchornia crassipes). International Journal of Molecular Sciences, 13(1), 961–976. DOI: https://doi.org/10.3390/ijms13010961
Aquino, R. S., Grativol, C., and Mourão, P. A., 2011. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PloS one, 6(4), e18862. DOI: https://doi.org/10.1371/journal.pone.0018862
Ciancia, M., Fernández, P. V., and Leliaert, F., 2020. Diversity of sulfated polysaccharides from cell walls of coenocytic green algae and their structural relationships in view of green algal evolution. Frontiers in plant science, 11, 554585. DOI: https://doi.org/10.3389/fpls.2020.554585
Nader, H. B., Medeiros, M. G., Paiva, J., Paiva, V. M., Jerônimo, S. M., Ferreira, T. M., and Dietrich, C. P., 1983. A correlation between the sulfated glycosaminoglycan concentration and degree of salinity of the “habitat” in fifteen species of the classes Crustacea, Pelecypoda and Gastropoda. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 76(3), 433–436. DOI: https://doi.org/10.1016/0305-0491(83)90271-7
Dittami, S. M., Gravot, A., Goulitquer, S., Rousvoal, S., Peters, A. F., Bouchereau, A., Boyen, C., and Tonon, T., 2012. Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). The Plant Journal, 71(3), 366–377. DOI: https://doi.org/10.1111/j.1365-313X.2012.04982.x
Ferreira, A. S., Mendonça, I., Povoa, I., Carvalho, H., Correia, A., Vilanova, M., Silva, T. H., Coimbra, M. A., and Nunes, C., 2021. Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Research, 59, 102439. DOI: https://doi.org/10.1016/j.algal.2021.102439
Bunsom, C., and Prathep, A., 2012. Effects of salinity, light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla lagoon in Thailand. Phycological research, 60(3), 169–178. DOI: https://doi.org/10.1111/j.1440-1835.2012.00648.x
Sfriso, A. A., Gallo, M., and Baldi, F., 2017. Seasonal variation and yield of sulfated polysaccharides in seaweeds from the Venice lagoon. Botanica marina, 60(3), 339–349. DOI: https://doi.org/10.1515/bot-2016-0063
Yuvaraj, N., and Arul, V., 2018. Sulfated polysaccharides of seagrass Halophila ovalis suppresses tumor necrosis factor-α-induced chemokine interleukin-8 secretion in HT-29 cell line. Indian Journal of Pharmacology, 50(6), 336–343. DOI: https://doi.org/10.4103/ijp.IJP_202_18
Mettwally, W. S., Ragab, T. I., Hamdy, A. H. A., Helmy, W. A., and Hassan, S. A., 2021. Preliminary study on the possible impact of Thalassodendron ciliatum (Forss.) den Hartog acidic polysaccharide fractions against TAA induced liver failure. Biomedicine & Pharmacotherapy, 138, 111502. DOI: https://doi.org/10.1016/j.biopha.2021.111502
Kolsi, R. B. A., Fakhfakh, J., Krichen, F., Jribi, I., Chiarore, A., Patti, F. P., Blecker, C., Allouche, N., Belghith, H., and Belghith, K., 2016. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide. Carbohydrate Polymers, 151, 511–522. DOI: https://doi.org/10.1016/j.carbpol.2016.05.098
Silva, J., Dantas-Santos, N., Gomes, D. L., Costa, L. S., Cordeiro, S. L., Costa, M. S., Silva, N. B., Freitas, M. L., Scortecci, K. C., Leite, E. L., and Rocha, H. A., 2012. Biological activities of the sulfated polysaccharide from the vascular plant Halodule wrightii. Revista Brasileira de Farmacognosia, 22, 94–101. DOI: https://doi.org/10.1590/S0102-695X2011005000199
Pfeifer, L., Shafee, T., Johnson, K. L., Bacic, A., and Classen, B., 2020. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Scientific reports, 10(1), 8232. DOI: https://doi.org/10.1038/s41598-020-65135-5
Pfeifer, L., 2021. “Neptune balls” polysaccharides: Disentangling the wiry seagrass detritus. Polymers, 13(24), 4285. DOI: https://doi.org/10.3390/polym13244285
Pfeifer, L., and Classen, B., 2020. The cell wall of seagrasses: Fascinating, peculiar and a blank canvas for future research. Frontiers in plant science, 11, 588754. DOI: https://doi.org/10.3389/fpls.2020.588754
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vietnam Academy of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.