Morphological variation and haplotype diversity of \(\textit{Halimeda macroloba}\) and \(\textit{H. opuntia}\) (Chlorophyta: Halimedaceae) from Southern Vietnam

Authors

  • Nguyen Trung Hieu Institute of Oceanography, VAST, Vietnam
  • Nguyen Nhat Nhu Thuy Institute of Oceanography, VAST, Vietnam
  • Nguyen Xuan-Thuy Institute of Oceanography, VAST, Vietnam
  • Nguyen Xuan Vy Institute of Oceanography, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/16689

Keywords:

Genetic variation, Halimeda, morphology, Southern Vietnam, tufA.

Abstract

Plasticity in morphology is a common phenomenon of aquatic plants. Halimeda (Chlorophyta: Halimedaceae) is usually supersaturated with calcium carbonate and is found in tropical and subtropical regions. Among members of Halimeda, both species including Halimeda macroloba and H. opuntia, often occur in different habitats. Haplotype diversity and network of Halimeda were reported in the different sea and oceanic systems. However, there are no reports of the genetic diversity of Halimeda in Vietnamese waters. This present study carried out sample collections along the coast of Southern Viet Nam, including the coast sites, offshore islands, and Spratly (Truong Sa) islands. External morphological and anatomical characteristics of two dominant species, Halimeda macroloba and H. opuntia, were caparisoned. The genetic marker tufA was applied to find the haplotype diversity and network among Vietnamese and worldwide populations. The results showed that high morphology exists in both species. In contrast, the genetic variation in H. macroloba is very low, and H. opuntia tends to form a distinct group. We suggest that more samples of two species from other locations in Northern Vietnam be included.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Arina, N., Rozaimi, M., and Zainee, N. F. A., 2019. High localised diversity of Halimeda (Chlorophyta: Bryopsidales) in a tropical marine park from Pahang, Malaysia. Regional Studies in Marine Science, 31, 100773. https://doi.org/10.1016/j.rsma.2019.100773 DOI: https://doi.org/10.1016/j.rsma.2019.100773

[2] Granier, B., 2012. The contribution of calcareous green algae to the production of limestones: a review. Geodiversitas, 34(1), 35–60. https://doi.org/10.5252/g2012n1a3 DOI: https://doi.org/10.5252/g2012n1a3

[3] Kooistra, W. H., and Verbruggen, H., 2005. Genetic patterns in the calcified tropical seaweeds Halimeda opuntia, H. distorta, H. hederacea, and H. minima (bryopsidales, chlorophyta) provide insights in species boundaries and interoceanic dispersal 1. Journal of phycology, 41(1), 177–187. https://doi.org/10.1111/j.1529-8817.2005.04095.x DOI: https://doi.org/10.1111/j.1529-8817.2005.04095.x

[4] Guiry, M. D. and Guiry, G. M., 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 01 November 2021.

[5] Pongparadon, S., Zuccarello, G. C., and Prathep, A., 2017. High morpho‐anatomical variability in Halimeda macroloba (Bryopsidales, Chlorophyta) in Thai waters. Phycological Research, 65(2), 136–145. https://doi.org/10.1111/pre.12172 DOI: https://doi.org/10.1111/pre.12172

[6] Neustupa, J., and Nemcova, Y., 2020. Morphometric analysis of surface utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) reveals variation in their size and symmetry within individual segments. Symmetry, 12(8), 1271. https://doi.org/10.3390/sym12081271 DOI: https://doi.org/10.3390/sym12081271

[7] Verbruggen, H., De Clerck, O., Schils, T., Kooistra, W. H., and Coppejans, E., 2005. Evolution and phylogeography of Halimeda section Halimeda (Bryopsidales, Chlorophyta). Molecular phylogenetics and evolution, 37(3), 789–803. https://doi.org/10.1016/j.ympev.2005.06.015 DOI: https://doi.org/10.1016/j.ympev.2005.06.015

[8] Verbruggen, H., and Kooistra, W. H., 2004. Morphological characterization of lineages within the calcified tropical seaweed genus Halimeda (Bryopsidales, Chlorophyta). European Journal of Phycology, 39(2), 213–228. https://doi.org/10.1080/0967026042000202163 DOI: https://doi.org/10.1080/0967026042000202163

[9] Phang, S. M., Yeong, H. Y., Ganzon-Fortes, E. T., Lewmanomont, K., Prathep, A., Gerung, G. S., and Tan, K. S., 2016. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bulletin of Zoology, (Supplement 34), 13–59.

[10] Pongparadon, S., Zuccarello, G. C., Phang, S. M., Kawai, H., Hanyuda, T., and Prathep, A., 2015. Diversity of Halimeda (Chlorophyta) from the Thai–Malay Peninsula. Phycologia, 54(4), 349–366. https://doi.org/10.2216/14-108.1 DOI: https://doi.org/10.2216/14-108.1

[11] Trono, G. C., 1999. Diversity of the seaweed flora of the Philippines and its utilization. Hydrobiologia, 398, 1–6. https://doi.org/10.1023/A:1017097226330 DOI: https://doi.org/10.1007/978-94-011-4449-0_1

[12] Van Nguyen, T., Le, N. H., Lin, S. M., Steen, F., and De Clerck, O., 2013. Checklist of the marine macroalgae of Vietnam. Botanica marina, 56(3), 207–227. doi: 10.1515/bot-2013-0010 DOI: https://doi.org/10.1515/bot-2013-0010

[13] Kojima, R., Hanyuda, T., and Kawai, H., 2015. Taxonomic re-examination of Japanese Halimeda species using genetic markers, and proposal of a new species Halimeda ryukyuensis (Bryopsidales, Chlorophyta). Phycological Research, 63(3), 178–188. https://doi.org/10.1111/pre.12095 DOI: https://doi.org/10.1111/pre.12095

[14] Nguyen-Nhat, N. T., Dao, V. H., and Nguyen, X. V., 2019. New record of the rare brown alga Dictyota hauckiana from Vietnam. Botanica marina, 62(6), 599–603. doi: 10.1515/bot-2019-0024 DOI: https://doi.org/10.1515/bot-2019-0024

[15] Le, H. N., Muangmai, N., Kheauthong, S., Sun, Z., and Zuccarello, G. C., 2020. Gracilaria phuquocensis sp. nov., a new flattened Gracilaria species (Gracilariales, Rhodophyta), previously recognized as G. mammillaris, from the southern coast of Vietnam. Phycological Research, 68(1), 50–56. https://doi.org/10.1111/pre.12394 DOI: https://doi.org/10.1111/pre.12394

[16] Nguyen, X. V., Nguyen-Nhat, N. T., Nguyen, X. T. T., Nguyen, M. N. T., Dao, V. H., and McDermid, K. J., 2021. Three New Records of Marine Macroalgae from Viet Nam based on Morphological Observations and Molecular Analyses. Pacific Science, 75(4), 497–512. https://doi.org/10.2984/75.4.3 DOI: https://doi.org/10.2984/75.4.3

[17] Verbruggen, H., Clerck, O. D., and Coppejans, E., 2005. Deviant segments hamper a morphometric approach towards Halimeda taxonomy. Cryptogamie-Algologie, 26(3), 259–274.

[18] Famà, P., Wysor, B., Kooistra, W. H., and Zuccarello, G. C., 2002. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene1. Journal of phycology, 38(5), 1040–1050. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01237.x DOI: https://doi.org/10.1046/j.1529-8817.2002.t01-1-01237.x

[19] Katoh, K., and Standley, D. M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010

[20] Darriba, D., Taboada, G. L., Doallo, R., and Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109 DOI: https://doi.org/10.1038/nmeth.2109

[21] Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029 DOI: https://doi.org/10.1093/sysbio/sys029

[22] Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A., 2018. Posterior summarization in Bayesian phylogenetic using Tracer 1.7. Systematic biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032 DOI: https://doi.org/10.1093/sysbio/syy032

[23] Huson, D. H., and Scornavacca, C., 2012. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Systematic biology, 61(6), 1061–1067. https://doi.org/10.1093/sysbio/sys062 DOI: https://doi.org/10.1093/sysbio/sys062

[24] Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., and Sánchez-Gracia, A., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248 DOI: https://doi.org/10.1093/molbev/msx248

[25] Müller, K., 2006. Incorporating information from length-mutational events into phylogenetic analysis. Molecular phylogenetics and evolution, 38(3), 667–676. https://doi.org/10.1016/j.ympev.2005.07.011 DOI: https://doi.org/10.1016/j.ympev.2005.07.011

[26] Bandelt, H. J., Forster, P., and Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 DOI: https://doi.org/10.1093/oxfordjournals.molbev.a026036

[27] Flukes, E. B., Wright, J. T., and Johnson, C. R., 2015. Phenotypic plasticity and biogeographic variation in physiology of habitat‐forming seaweed: response to temperature and nitrate. Journal of phycology, 51(5), 896–909. https://doi.org/10.1111/jpy.12330 DOI: https://doi.org/10.1111/jpy.12330

[28] Verbruggen, H., De Clerck, O., N’yeurt, A. D., Spalding, H., and Vroom, P. S., 2006. Phylogeny and taxonomy of Halimeda incrassata, including descriptions of H. kanaloana and H. heteromorpha spp. nov.(Bryopsidales, Chlorophyta). European Journal of Phycology, 41(3), 337–362. doi: 10.1080/09670260600709315 DOI: https://doi.org/10.1080/09670260600709315

[29] Vy, N. X., Bujang, J. S., and Papenbrock, J., 2013. Variability of leaf morphology and marker genes of members of the Halophila complex collected in Viet Nam. Aquatic botany, 110, 6–15. doi: 10.1016/j.aquabot.2013.04.003 DOI: https://doi.org/10.1016/j.aquabot.2013.04.003

[30] Nguyen, X. V., Nguyen-Nhat, N. T., Nguyen, X. T., Dao, V. H., M. Liao, L., and Papenbrock, J., 2021. Analysis of rDNA reveals a high genetic diversity of Halophila major in the Wallacea region. PloS one, 16(10), e0258956. doi: 10.1371/journal.pone.0258956 DOI: https://doi.org/10.1371/journal.pone.0258956

[31] Rindi, F., Pasella, M. M., Lee, M. F. E., and Verbruggen, H., 2020. Phylogeography of the mediterranean green seaweed Halimeda tuna (Ulvophyceae, Chlorophyta). Journal of phycology, 56(4), 1109–1113. https://doi.org/10.1111/jpy.13006 DOI: https://doi.org/10.1111/jpy.13006

Downloads

Published

21-06-2022

How to Cite

Nguyen, T. H., Nguyen Nhat, N. T., Nguyen, X. T., & Nguyen, V. X. (2022). Morphological variation and haplotype diversity of \(\textit{Halimeda macroloba}\) and \(\textit{H. opuntia}\) (Chlorophyta: Halimedaceae) from Southern Vietnam. Vietnam Journal of Marine Science and Technology, 22(2), 165–176. https://doi.org/10.15625/1859-3097/16689

Issue

Section

Articles