Antioxidant and cytoprotective activities of marine fungi isolated from brown seaweeds in Nha Trang Bay, Khanh Hoa Province, Central Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/18869Keywords:
Antioxidant activity, cytoprotective activity, Penicillium, Aspergillus, brown seaweed, marine fungi.Abstract
This study aims to evaluate the antioxidant and cytoprotective activities of 32 fungal strains isolated from brown seaweeds collected from Nha Trang Bay, Khanh Hoa Province, Central Vietnam. These fungal extracts were screened for antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging assay. In contrast, cytoprotective activity on rat cardiomyocytes H9c2 cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. The results indicated the capacity for free DPPH and ABTS radical scavenging of fungal crude extracts with 31.25% (n = 10) and 81.25% (n = 26), respectively. Among the fungal strains with high antioxidant activity, the three fungal extracts 2104NT-1.3, 2104NT-3.3, and 2104NT-7.7 increased the viability of rotenone-exposed cardiomyocyte cells by 9.9%, 15.2%, and 13.6%, respectively. Three fungal strains with significant antioxidant and cytoprotective activities were identified as Penicillium chermesinum 2104NT-1.3, Aspergillus sp. 2104NT-3.3, and Penicillium sp. 2104NT-7.7 based on sequence analysis of internal transcribed spacer (ITS) region. This study provided the potential fungal strains isolated from Nha Trang Bay for further investigation of antioxidant and cytoprotective compounds.
Downloads
Metrics
References
Bugni, T. S., and Ireland, C. M., 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Natural product reports, 21(1), 143–163. DOI: https://doi.org/10.1039/b301926h
Hasan, S., Ansari, M. I., Ahmad, A., and Mishra, M., 2015. Major bioactive metabolites from marine fungi: A Review. Bioinformation, 11(4), 176. DOI: https://doi.org/10.6026/97320630011176
Rateb, M. E., and Ebel, R., 2011. Secondary metabolites of fungi from marine habitats. Natural Product Reports, 28(2), 290–344. DOI: https://doi.org/10.1039/c0np00061b
Debbab, A., Aly, A. H., and Proksch, P., 2011. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Diversity, 49(1), 1–12. DOI: https://doi.org/10.1007/s13225-011-0114-0
Suryanarayanan, T. S., and Johnson, J. A., 2014. Fungal endosymbionts of macroalgae: need for enquiries into diversity and technological potential. Oceanography, 2(119), 1–3. DOI: https://doi.org/10.4172/2332-2632.1000119
Suryanarayanan, T. S., 2012. Fungal endosymbionts of seaweeds. In Biology of marine fungi . Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 53–69. DOI: https://doi.org/10.1007/978-3-642-23342-5_3
Zhang, P., Li, X., and Wang, B. G., 2016. Secondary metabolites from the marine algal-derived endophytic fungi: Chemical diversity and biological activity. Planta Medica, 82(09/10), 832–842. DOI: https://doi.org/10.1055/s-0042-103496
Sarasan, M., Puthumana, J., Job, N., Han, J., Lee, J. S., and Philip, R., 2017. Marine Algicolous Endophytic Fungi-A Promising Drug Resource of the Era. Journal of Microbiology and Biotechnology, 27(6), 1039–1052. DOI: https://doi.org/10.4014/jmb.1701.01036
Flewelling, A. J., Currie, J., Gray, C. A., and Johnson, J. A., 2015. Endophytes from marine macroalgae: promising sources of novel natural products. Current Science, 108, 88–111.
Dighton, J., and White, J. F., 2005. Fungal Communities of Seaweeds. In The Fungal Community. CRC Press. pp. 553–600. DOI: https://doi.org/10.1201/9781420027891-35
Girich, E. V., Trinh, P. T. H., Nesterenko, L. E., Popov, R. S., Kim, N. Y., Rasin, A. B., Menchinskaya, E. S., Kuzmich, A. S., Chingizova, E. A., Minin, A. S., Ngoc, N. T. D., Van, T. T. T., Yurchenko, E. A., Yurchenko, A. N., and Berdyshev, D. V., 2023. Absolute stereochemistry and cytotoxic effects of vismione E from marine sponge-derived fungus Aspergillus sp. 1901nt-1.2. 2. International Journal of Molecular Sciences, 24(9), 8150. DOI: https://doi.org/10.3390/ijms24098150
Girich, E. V., Yurchenko, A. N., Smetanina, O. F., Trinh, P. T. H., Ngoc, N. T. D., Pivkin, M. V., Popov, R. S., Pislyagin, E. A., Menchinskaya, E. S., Chingizova, E. A., Afiyatullov, S. S., and Yurchenko, E. A., 2020. Neuroprotective metabolites from vietnamese marine derived fungi of Aspergillus and Penicillium genera. Marine drugs, 18(12), 608. DOI: https://doi.org/10.3390/md18120608
Yurchenko, A. N., Trinh, P. T. H., Girich, E. V., Smetanina, O. F., Rasin, A. B., Popov, R. S., Dyshlovoy, S. A., von Amsberg, G., Menchinskaya, E. S., Van, T. T. T., and Afiyatullov, S. S., 2019. Biologically active metabolites from the marine sediment-derived fungus Aspergillus flocculosus. Marine drugs, 17(10), 579. DOI: https://doi.org/10.3390/md17100579
Handayani, D., Ornando, R., and Rustini, 2016. Antimicrobial activity screening of symbiotic fungi from marine sponge Petrosia nigrans collected from South Coast of West Sumatera Indonesia. International Journal of Pharmacognosy and Phtochemical research, 8(4), 623–625.
Sobolevskaya, M. P., Leshchenko, E. V., Hoai, T. P., Denisenko, V. A., Dyshlovoy, S. A., Kirichuk, N. N., Khudyakova, Y. V., Kim, N. Y., Berdyshev, D. V., Pislyagin, E. A., Kuzmich, A. S., Gerasimenko, A. V., Popov, R. S., von Amsberg, G., Antonov, A. S., and Afiyatullov, S. S., 2016. Pallidopenillines: Polyketides from the alga-derived fungus Penicillium thomii Maire KMM 4675. Journal of natural products, 79(12), 3031–3038. DOI: https://doi.org/10.1021/acs.jnatprod.6b00624
Lee, K. J., Oh, Y. C., Cho, W. K., and Ma, J. Y., 2015. Antioxidant and anti‐inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evidence‐Based Complementary and Alternative Medicine, 2015(1), 165457. DOI: https://doi.org/10.1155/2015/165457
Jeong, S. H., Kim, H. K., Song, I. S., Lee, S. J., Ko, K. S., Rhee, B. D., Kim, N., Mishchenko, N. P., Fedoryev, S. A., Stonik, V. A., and Han, J., 2014. Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs. Marine drugs, 12(5), 2922–2936. DOI: https://doi.org/10.3390/md12052922
Fredricks, D. N., Smith, C., and Meier, A., 2005. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. Journal of clinical microbiology, 43(10), 5122–5128. DOI: https://doi.org/10.1128/JCM.43.10.5122-5128.2005
White, T. J., Bruns, T., Lee, S. J. W. T., and Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Abdel-Lateff, A., Fisch, K. M., Wright, A. D., and König, G. M., 2003. A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta medica, 69(09), 831–834. DOI: https://doi.org/10.1055/s-2003-43209
Li, X., Li, X. M., Xu, G. M., Li, C. S., and Wang, B. G., 2014. Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochemistry letters, 7, 120–123. DOI: https://doi.org/10.1016/j.phytol.2013.11.008
Hulikere, M. M., Joshi, C. G., Ananda, D., Poyya, J., and Nivya, T., 2016. Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus) isolated from seaweed (Sargassum wightii). Mycology, 7(4), 203–211. DOI: https://doi.org/10.1080/21501203.2016.1263688
Trinh, P. T. H., Van, T. T. T., Ngoc, N. T. D., Hang, C. T. T., Hoa, L. T., Trung, D. T., Khanh, H. H. N., and Hung, L. D., 2019. Evaluation of antioxidant and antimicrobial activities of marine fungi isolated from Nha Trang Bay. Journal of Biology, 41(2se1&2se2), 409–417. (in Vietnamese).
Dao, D. Q., Phan, T. T. T., Nguyen, T. L. A., Trinh, P. T. H., Tran, T. T. V., Lee, J. S., Shin, H. J., and Choi, B. K., 2020. Insight into antioxidant and photoprotective properties of natural compounds from marine fungus. Journal of chemical information and modeling, 60(3), 1329–1351. DOI: https://doi.org/10.1021/acs.jcim.9b00964
Phaniendra, A., Jestadi, D. B., and Periyasamy, L., 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30, 11–26. DOI: https://doi.org/10.1007/s12291-014-0446-0
Bălașa, A. F., Chircov, C., and Grumezescu, A. M., 2020. Marine biocompounds for neuroprotection—A review. Marine Drugs, 18(6), 290. DOI: https://doi.org/10.3390/md18060290
Yurchenko, E. A., Menchinskaya, E. S., Pislyagin, E. A., Trinh, P. T. H., Ivanets, E. V., Smetanina, O. F., and Yurchenko, A. N., 2018. Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin-and paraquat-induced Parkinson’s disease models. Marine drugs, 16(11), 457. DOI: https://doi.org/10.3390/md16110457
Trinh, P. T. H., Girich, E. V., Yurchenko, A. N., Khmel, O. O., Dieu, T. V. T., Ngoc, N. T. D., Lee, J. S., Menshov, A. S., Kim, N. Y., Chingizova, E. A., Van, T. T. T., Lee, H. S., and Yurchenko, E. A., 2022. Cytoprotective polyketides from sponge-derived fungus Lopadostoma pouzarii. Molecules, 27(21), 7650. DOI: https://doi.org/10.3390/molecules27217650
Imhoff, J. F., 2016. Natural products from marine fungi—Still an underrepresented resource. Marine drugs, 14(1), 19. DOI: https://doi.org/10.3390/md14010019
Nicoletti, R., and Vinale, F., 2018. Bioactive compounds from marine-derived Aspergillus, Penicillium, Talaromyces and Trichoderma species. Marine drugs, 16(11), 408. DOI: https://doi.org/10.3390/md16110408
Trinh, P. T. H., Chanh, N. T. K., Ngoc, N. T. D., Tien, P. Q., Ly, B. M., and Van, T. T. T., 2017. Secondary metabolites from a marine-derived fungus Penicillium chrysogenum 045-357-2. Vietnam Journal of Science and Technology, 55(1A), 65–72. DOI: https://doi.org/10.15625/2525-2518/55/1A/12383
Choi, B.-K., Park, S.-Y., Jo, S.-H., Choi, D.-K., Trinh, P. T. H., Lee, H.-S., Cao, V. A., Ngo, T. D. N., Van, T. T. T., and Shin, H. J., 2020. Restricticin B from the marine fungus Penicillium janthinellum and its inhibitory activity on the NO production in BV-2 microglia cells. Preprints, 2020020139. DOI: https://doi.org/10.20944/preprints202002.0139.v1
Yurchenko, A. N., Smetanina, O. F., Ivanets, E. V., Phan, T. T. H., Ngo, N. T. D., Zhuravleva, O. I., Rasin, A. B., Dyshlovoy, S. A., Menchinskaya, E. S., Pislyagin, E. A., Amsberg, G. V., Afiyatullov, S. S., and Yurchenko, E. A., 2020. Auroglaucin-related neuroprotective compounds from Vietnamese marine sediment-derived fungus Aspergillus niveoglaucus. Natural product research, 34(18), 2589–2594. DOI: https://doi.org/10.1080/14786419.2018.1547293
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vietnam Academy of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.