Chemical composition and major volatile compounds of the hydrolyzed product from Kappaphycus alvarezii by-products using flavourzyme

Nguyen Phuong Anh, Pham Xuan Ky, Dao Viet Ha, Dao Viet Ha, Nguyen Thu Hong, Le Ho Khanh Hy, Doan Thi Thiet, Phan Bao Vy
Author affiliations

Authors

  • Nguyen Phuong Anh Journal of Marine Science and Technology
  • Pham Xuan Ky
  • Dao Viet Ha
  • Dao Viet Ha
  • Nguyen Thu Hong
  • Le Ho Khanh Hy
  • Doan Thi Thiet
  • Phan Bao Vy

DOI:

https://doi.org/10.15625/1859-3097/19/4A/14593

Keywords:

Kappaphycus alvarezii, flavourzyme, by-products, hydrolysis.

Abstract

The chemical composition of flavourzyme hydrolysis product from Kappaphycus alvarezii by-products was analyzed. The results showed that the protein hydrolysate powder had high content of proteins (21.66%) and low content of lipids (0.22%). Hydrolyzed products contained about 15 free amino acids with relatively high content of some amino acids such as aspartic acid (1,879 mg/100 g), glutamic acid (1,813 mg/100 g), glycine (1,121 mg/100 g), tyrosine (1,203 mg/100 g) ) and serine (3,165 mg/100 g). In addition, main volatile flavor compounds such as acetophenone; nonanal; indole; 2.4-di-tert-butylphenol; heptadecane; 6.10.14- trimethylpentadecan-2-one have also been discovered. As a result, the by-products of K. alvarezii take a potential role in the food industry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sonklin, C., Laohakunjit, N., and Kerdchoechuen, O., 2011. Physicochemical and flavor characteristics of flavoring agent from mungbean protein hydrolyzed by bromelain. Journal of Agricultural and Food Chemistry, 59(15), 8475–8483.

Silva, V. M., Park, K. J., and Hubinger, M. D., 2010. Optimization of the enzymatic hydrolysis of mussel meat. Journal of food science, 75(1), C36–C42.

Jang, H. J., Kim, M. C., Jung, E. M., Shin, E. C., Lee, S. H., Lee, S. J., Kim, S. B., and Lee, Y. B., 2005. Optimization and flavor quality of enzymatic hydrolysate from dark muscle of skipjack. Preventive Nutrition and Food Science, 10(1), 11–16.

Laohakunjit, N., Selamassakul, O., and Kerdchoechuen, O., 2014. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.). Food chemistry, 158, 162–170.

Imm, J. Y., and Lee, C. M., 1999. Production of seafood flavor from red hake (Urophycis chuss) by enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 47(6), 2360–2366.

Weir, G. S. D., 1992. Proteins as a source of flavour. In Biochemistry of food proteins (pp. 363–408). Springer, Boston, MA.

Su, G., Cui, C., Zheng, L., Yang, B., Ren, J., and Zhao, M., 2012. Isolation and identification of two novel umami and umami-enhancing peptides from peanut hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS. Food chemistry, 135(2), 479–485.

Sugisawa, H., Nakamura, K., and Tamura, H., 1990. The aroma profile of the volatiles in marine green algae (Ulva pertusa). Food Reviews International, 6(4), 573–589.

Yamamoto, M., Baldermann, S., Yoshikawa, K., Fujita, A., Mase, N., and Watanabe, N., 2014. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry. The Scientific World Journal, 1–8.

Qi, H., Xu, Z., Li, Y. B., Ji, X. L., Dong, X. F., and Yu, C. X., 2017. Seafood flavourings characterization as prepared from the enzymatic hydrolysis of Undaria pinnatifida sporophyll by-product. International journal of food properties, 20(12), 2867–2876. DOI: 10.1080/10942912.2016.1256302.

Izzreen, N. Q. M., and Ratnam, V. R., 2011. Volatile compound extraction using solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME-GCMS) in local seaweeds of Kappaphycus alvarezii, Caulerpa lentillifera and Sargassum polycystem. International Food Research Journal, 18(4), 1449–1456.

Bligh, E. G., and Dyer, W. J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M., Fujimoto, E. K., Goeke, N. M., Olso, B. J., and Klenk, D. C., 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85.

Kechaou, E. S., Dumay, J., Donnay-Moreno, C., Jaouen, P., Gouygou, J. P., Bergé, J. P., and Amar, R. B., 2009. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition. Journal of Bioscience and Bioengineering, 107(2), 158–164.

Mamede, M. E., and Pastore, G. M., 2006. Study of methods for the extraction of volatile compounds from fermented grape must. Food Chemistry, 96(4), 586–590.

Rao, M. S., Munoz, J., and Stevens, W. F., 2000. Critical factors in chitin production by fermentation of shrimp biowaste. Applied Microbiology and Biotechnology, 54(6), 808–813.

Yu, H. Z., and Chen, S. S., 2010. Identification of characteristic aroma-active compounds in steamed mangrove crab (Scylla serrata). Food research international, 43(8), 2081–2086.

Downloads

Published

08-11-2019

How to Cite

Anh, N. P., Ky, P. X., Ha, D. V., Ha, D. V., Hong, N. T., Hy, L. H. K., Thiet, D. T., & Vy, P. B. (2019). Chemical composition and major volatile compounds of the hydrolyzed product from <i>Kappaphycus alvarezii</i> by-products using flavourzyme. Vietnam Journal of Marine Science and Technology, 19(4A), 123–130. https://doi.org/10.15625/1859-3097/19/4A/14593

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>