Vol. 25 No. 2 (2015)

Optical Property and Photoelectrical Performance of a Low-bandgap Conducting Polymer Incorporated with Quantum Dots Used for Organic Solar Cells

Tran Thi Thao
Vu Thi Hai
Nguyen Nang Dinh
University of Engineering and Technology Vietnam National University, Hanoi
Le Dinh Trong
Hanoi Pedagogical University No. 2

Published 01-09-2015

How to Cite

Thao, T. T., Hai, V. T., Dinh, N. N., & Trong, L. D. (2015). Optical Property and Photoelectrical Performance of a Low-bandgap Conducting Polymer Incorporated with Quantum Dots Used for Organic Solar Cells. Communications in Physics, 25(2), 139. https://doi.org/10.15625/0868-3166/25/2/6200


By using spin-coating technique, a low bandgap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen-ta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)  and its composite thin films have been prepared. The optical absorption and photoconductive properties with over a wide spectral range, from 350 to 950  nm, were characterized. The obtained results showed that PCPDTBT:10 wt% CdSe  composite is the most suitable for efficient light-harvesting in polymer-based photovoltaic cells. The photoelectrical conversion efficiency (PCE) of the device with  a multilayer structure of ITO/PEDOT/ PCPDTBT:CdSe /LiF/Al  reached a value as large as 1.34% with an open-circuit voltage (Voc) = 0.57 V, a short-circuit current density (Jsc) = 4.29 mA/cm2, and a fill factor (FF) = 0.27. This suggests a useful application in further fabrication of quantum dots/polymers based solar cells.


Download data is not yet available.


Metrics Loading ...


  1. C. J. Brabec, N. S. Sariciftci, J. C. Hummenmen, Adv. Funct. Mater. 11 (2001) 15.
  2. H. Hoppe, N. S. Sariciftci, J. Mater. Research 19/7 (2004) 1724.
  3. M. Wright, A. Uddin, Solar Ener. Mater. Solar Cells 107 (2012) 87.
  4. L. F. Santos R.C. Faria L. Gaffo L.M. Carvalho R.M. Faria D. Gonc¸alves, Electrochim Acta 52 (2007) 4299
  5. S-H Yang C-C Wu C-F Lee M-H Liu, Displays 29 (2008) 214
  6. S. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S. Gradecak, Nano Letters
  7. (2011) 3998.
  8. C. Soci, I.-W Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, A. J. Heeger. Adv. Funct. Mater.
  9. (2007) 632.
  10. Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U.
  11. Scherf, M. Kr¨uger, Sol. Energy Mat. Sol Cells 95 (2011) 1232.
  12. K. Kawata, V. M. Burlakov, M. J. Carey, H. E. Assender, G. A. D. Briggs, A. Ruseckas, I. D. W. Samuel, Sol.
  13. Energy Mat. Sol Cells 87 (2005) 715.
  14. S. A. Carter, J. C. Scott, and P. J. Brock, Appl. Phys. Lett. 71/9 (1997) 1145.
  15. S. Thomas, K. Joseph, S. K. Malhotra, K. Goda, M. S. Sreekala, Polymer Composites, Nanocomposites, John
  16. Wiley & Sons, Apr 16, 2013 (Technology & Engineering) 450p.
  17. R. Liu, Materials 7 (2014) 2747.
  18. W. U. Huynh, X. G. Peng, A. P. Alivisatos, Adv. Mater. 11 (1999) 923.
  19. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78
  20. (2001) 841.
  21. Tran Thi Thao, Nguyen Thi Thuy Nga, Vo-Van Truong, Nguyen Nang Dinh, Proc. ICPA-2014, Da-Nang city,
  22. Vietnam, August 1216, 2014 (in press).
  23. N. N. Dinh, L. H. Chi, T. T. C. Thuy, T. Q. Trung, and T. Vo-Van, J. Appl. Phys. 105 (2009) 093518 (5p).
  24. C. J. Brabec, C. Winder, N. S. Sariciftci, J. C. Hummelen, A. Dhana-balan, P. A. van Hal, R. A. J. Janssen, Adv.
  25. Funct. Mater. 12 (2002) 709.
  26. S. H. Yang, T. P. Nguyen, P. Le Rendu, C. S. Hsu, Composites Part A: Appl. Sci.Manufact. 36 (2005) 509.
  27. N. C. Greenham, X. Peng, A. P. Alivisatos, Phys. Rev. B54 (1996) 17628.
  28. N. C. Greenham, X. Peng, A. P. Alivisatos, In Future Generation Photovoltaic Technologies: First NREL Conference;
  29. McConnell, R., Ed.; American Institute of Physics: Melville, NY, 1997.
  30. A. J. Nozik, Nano Lett. 10 (2010) 2735.
  31. C.-H. M. Chuang, P. R. Brown, V. Bulovi, M. G. Bawendi, Nature Materials 13 (2014) 796.