Vol. 28 No. 4 (2018)
Papers

Characterization of NH\(_3\) Sensing Properties of P3HT+rGO+CNT Composite Films Made by Spin-coating

Lam Minh Long
University of Engineering and Technology Vietnam National University Hanoi (VNU-UET)
Bio
Nguyen Nang Dinh
University of Engineering and Technology Vietnam National University Hanoi (VNU-UET)
Bio
Tran Quang Trung
University of Natural Science, VNU in Ho Chi Minh City
Bio

Published 27-12-2018

Keywords

  • P3HT rGO CNT composite,
  • surface morphology,
  • UV-Vis spectra,
  • NH3 gas sensors,
  • sensing response.

How to Cite

Long, L. M., Dinh, N. N., & Trung, T. Q. (2018). Characterization of NH\(_3\) Sensing Properties of P3HT+rGO+CNT Composite Films Made by Spin-coating. Communications in Physics, 28(4), 369. https://doi.org/10.15625/0868-3166/28/4/12683

Abstract

Thin films of poly(3-hexylthiophene) (P3HT) incorporated with reduced graphene oxide (rGO) and multi-walled carbon nanotubes (CNTs) were prepared by spin-coating technique. Atomic force microscope (AFM) surface morphology, UV-Vis spectra and NH3 gas sensing of the films were studied. Results showed that the P3HT embedded with a content of 20 wt.% of rGO and 10 % of CNTs (abbreviated to P3GC) resulted in the formation of nanostructured composites, exhibiting 1.50 nm-roughness surface and a semiconducting material with a bandgap of 1.92eV. These structure and composition of the P3GC film are appropriate for making film sensors whose resistance changes as a function of gas concentration. Monitoring ammonia gas by the sensors showed that the responding time of the sensing reached a value as fast as 30 s, the response at ammonia gas content of 10 ppm attained a value as large as 0.8% and the relative sensitivity was of 0.05 %/ppm.

Downloads

Download data is not yet available.

References

  1. T. Hibbard, K. Crowley, and A. J. Killard, Analytica Chimica Acta, 779 (2013) 6 – 63.
  2. M. Gardon and J. M. Guilemany, Journal of Materials Science 24 (2013) 1410 – 1421.
  3. J. Janata and M. Josowicz, Nature Materials 2 (2003) 19 – 24.
  4. H. Bai and G. Shi, Sensors, 7 (2007) 267 – 307.
  5. T. Patois, J.-B. Sanchez, and F. Bergeretal, Talanta 17 (2013) 45 – 54.
  6. Y.-S. Lee, B.-S. Joo, N.-J. Choi, J.-O. Lim, J.-S. Huh, and D.-D. Lee, Sensors and Actuators B 93 (2003) 148 – 152.
  7. S. Basu and P. Bhattacharyya, Sensors and Actuators B 173 (2012) 1 – 21.
  8. P. T. Yin, T. H. Kim, J. W. Choi, and K. B. Lee, Physical Chemistry Chemical Physics 15 (2013) 12785 – 12799.
  9. B. H. Chu, J. Nicolosi, C. F. Lo, W. Strupinski, S. J. Pearton, and F. Ren, Electrochemical and Solid State Letters 14 (2011) K43 – K46.
  10. M. Zhang and Z. Wang, Applied Physics Letters 102 (2013) 213104 – 213106.
  11. Lam Minh Long, Nguyen Nang Dinh, Hoang Thi Thu, Huynh Tri Phong, and Tran Quang Trung, VNU Journal of Science.: Mathematics. –Physics, 33 (2017) 52 – 60.
  12. Lam Minh Long, Nguyen Nang Dinh, Tran Quang Trung, Journal of Nanomaterials 2016 (2016) Article ID 5849018, 6 pages.
  13. Tran Thị Thao, Tran Quang Trung, Vo-Van Truong, Nguyen Nang Dinh, Journal of Nanomaterials, 2015 (2015) Article ID 463565, 7 pages.
  14. N. Abu-Zahra and M. Algazzar, Journal of Solar Energy Engineering, 136/2 (2013) 021023-1 ÷ 021023-7.
  15. L. Stobinski, B. Lesiaka, A. Malolepszyc, M. Mazurkiewiczc and B. Mierzwaa, Journal of Electron Spectroscopy and Related Phenomena, 195 (2014) 145 – 154.
  16. B. D. Cullity, Elements of X-Ray diffraction, 2nd ed., p. 102, Addison-Wesley Publishing Company, Inc., Reading, MA, 1978.
  17. B. M. Omer, Journal of Nano and Electronic Physics, 5 (2013) 03010-1 ÷ 03010-4.
  18. Y. Wang, L. Zhang, N. Hu, Ying Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, and C. Peng, Nanoscale Research Letters, 9 (2014) Article 251 (12p).
  19. O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, and C. A. Grimes, Sensors and Actuators B, 81 (2001) 32 – 41.
  20. L. Aba, Y. Yusuf, Mitrayana, and K. Triyana, Journal of Modern Physics, 3 (2012) 529 – 533.