Germanium Band Gap Engineering Induced by Tensile Strain for Si-Based Optoelectronic Applications

Luong Thi Kim Phuong, Nguyen Manh An
Author affiliations

Authors

  • Luong Thi Kim Phuong 1/ Aix Marseille Université, CNRS, CINaM-UMR 7325, F-13288 Marseille 2/Hong Duc University, 565 Quang Trung St., Thanh Hoa City, Vietnam
  • Nguyen Manh An Hong Duc University, 565 Quang Trung St., Thanh Hoa City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/23/4/3207

Keywords:

tensile strain, optoelectronics, molecular beam epitaxy, cyclic annealing

Abstract

We have combined structural and optical characterizations to investigate the tensile-strained state and the band gap engineering of Ge layers grown on Si(001) using molecular beam epitaxy. The tensile strain is generated in the Ge layers due to a difference of thermal expansion coefficients between Ge and Si. The Ge growth on Si(001) was proceeded using a two-step growth process: a low-temperature step to produce relaxed buffer layers, followed by a high-temperature step to generate the tensile strain in the Ge layers. For the low-temperature step, we have evidenced the existence of a substrate temperature window from 260 to \(300\circ\)C in which the well-known Stranski-Krastanov Ge/Si growth mode transition from two-dimensional to three-dimensional growth can be completely suppressed. We show that the value of the tensile strain in the Ge layers lineally increases with increasing the growth temperature and reaches a saturation value of \(\sim 0.24\)% in the temperature range of \(700-770\circ\)C. Post-grown cyclic thermal annealing has allowed to increase the tensile strain up to 0.30%, which is the highest value ever reported to date. Finally, photoluminescence measurements reveal both an enhancement of the Ge direct band gap emission and a reduction of its energy due to the presence of tensile strain in the layers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35 (2010) 679 and references therein. DOI: https://doi.org/10.1364/OL.35.000679

R. Soref, J. Kouvetakis, and J. Menendez, Mater. Res. Soc. Symp. Proc. 958 (2007) 13. DOI: https://doi.org/10.1557/PROC-0958-L01-08

R. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, J. Mater. Res. 22 (2007) 3281. DOI: https://doi.org/10.1557/JMR.2007.0415

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107 (2010) 013710. DOI: https://doi.org/10.1063/1.3279307

X. Sun, J.F. Liu, L.C. Kimerling, J. Michel, Appl. Phys. Lett. 95 (2009) 011911. DOI: https://doi.org/10.1063/1.3170870

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J.F. Damlencourt, O. Kermarrec, and D. Bensahel, Appl. Phys. Lett. 94 (2009) 191107. DOI: https://doi.org/10.1063/1.3138155

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96 (2010) 041909. DOI: https://doi.org/10.1063/1.3297883

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, J. Appl. Phys. 104 (2008) 084518. DOI: https://doi.org/10.1063/1.3005886

Y.-Y. Fang, J. Tolle, R. Roucka, A.V.G. Chizmeshya, J. Kouvetakis, V.R. D'Costa, J. Menéndez, Appl. Phys. Lett. 90, 061915 (2007); J. Menëndez, J. Kouvetakis, Appl. Phys. Lett. 85 (2004) 1175.

D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64 (1990) 1943. DOI: https://doi.org/10.1103/PhysRevLett.64.1943

V. Le Thanh, Surf. Sci. 492 (2001) 255 and references therein. DOI: https://doi.org/10.1016/S0039-6028(01)01455-8

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Pelange, and F. Evangelisti, Appl. Phys. Lett. 72 (1998) 3175. DOI: https://doi.org/10.1063/1.121584

H.-C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada, L.C. Kimerling, Appl. Phys. Lett. 75 (1999) 2009. DOI: https://doi.org/10.1063/1.125187

J.-M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J.M. Fédéli, M. Rouvière, L. Vivien, S. Laval, J. Appl. Phys. 95 (2004) 5905. DOI: https://doi.org/10.1063/1.1699524

J.-M. Hartmann, A.M. Papon, V. Destefanis, T. Billon, J. Cryst. Growth. 310 (2008) 5287. DOI: https://doi.org/10.1016/j.jcrysgro.2008.08.062

V. Le Thanh, V. Aubry-Fortuna, D. Bouchier, A. Younsi, and G. Hincelin, Surf. Sci. 369 (1996) 85. DOI: https://doi.org/10.1016/S0039-6028(96)00879-5

M. Halbwax, D. Bouchier, V. Yam, D. Débarre, Lam H. Nguyen, Y. Zheng, P. Rosner, M. Benamara, H. P. Strunk, C. Clerc, J. Appl. Phys. 97 (2005) 064907. DOI: https://doi.org/10.1063/1.1854723

V. Le Thanh, D. Bouchier, G. Hincelin, J. Appl. Phys. 87 (2000) 3700. DOI: https://doi.org/10.1063/1.372403

J. Liu, H. J. Kim, O. Hul’ko, Y. H. Xie, S. Sahni, P. Bandaru, and E. Yablonovitch, J. Appl. Phys. 96 (2004) 916. DOI: https://doi.org/10.1063/1.1738530

J. Liu, D. D. Cannon, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, Phys. Rev. B. 70 (2004) 155309.

L. Souriau, T. Atanasova, V. Terzieva, A. Moussa, M. Caymax, R. Loo, M. Meuris, and W. Vandervorst, J. Chem. Soc. 155 (2008) H677. DOI: https://doi.org/10.1149/1.2953495

M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66 (1995) 724. DOI: https://doi.org/10.1063/1.114112

Downloads

Published

20-01-2014

How to Cite

[1]
L. T. K. Phuong and N. M. An, “Germanium Band Gap Engineering Induced by Tensile Strain for Si-Based Optoelectronic Applications”, Comm. Phys., vol. 23, no. 4, p. 367, Jan. 2014.

Issue

Section

Papers
Received 19-08-2013
Accepted 23-12-2013
Published 20-01-2014