Germanium Band Gap Engineering Induced by Tensile Strain for Si-Based Optoelectronic Applications
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23/4/3207Keywords:
tensile strain, optoelectronics, molecular beam epitaxy, cyclic annealingAbstract
We have combined structural and optical characterizations to investigate the tensile-strained state and the band gap engineering of Ge layers grown on Si(001) using molecular beam epitaxy. The tensile strain is generated in the Ge layers due to a difference of thermal expansion coefficients between Ge and Si. The Ge growth on Si(001) was proceeded using a two-step growth process: a low-temperature step to produce relaxed buffer layers, followed by a high-temperature step to generate the tensile strain in the Ge layers. For the low-temperature step, we have evidenced the existence of a substrate temperature window from 260 to \(300\circ\)C in which the well-known Stranski-Krastanov Ge/Si growth mode transition from two-dimensional to three-dimensional growth can be completely suppressed. We show that the value of the tensile strain in the Ge layers lineally increases with increasing the growth temperature and reaches a saturation value of \(\sim 0.24\)% in the temperature range of \(700-770\circ\)C. Post-grown cyclic thermal annealing has allowed to increase the tensile strain up to 0.30%, which is the highest value ever reported to date. Finally, photoluminescence measurements reveal both an enhancement of the Ge direct band gap emission and a reduction of its energy due to the presence of tensile strain in the layers.Downloads
Metrics
References
J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35 (2010) 679 and references therein. DOI: https://doi.org/10.1364/OL.35.000679
R. Soref, J. Kouvetakis, and J. Menendez, Mater. Res. Soc. Symp. Proc. 958 (2007) 13. DOI: https://doi.org/10.1557/PROC-0958-L01-08
R. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, J. Mater. Res. 22 (2007) 3281. DOI: https://doi.org/10.1557/JMR.2007.0415
M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107 (2010) 013710. DOI: https://doi.org/10.1063/1.3279307
X. Sun, J.F. Liu, L.C. Kimerling, J. Michel, Appl. Phys. Lett. 95 (2009) 011911. DOI: https://doi.org/10.1063/1.3170870
M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J.F. Damlencourt, O. Kermarrec, and D. Bensahel, Appl. Phys. Lett. 94 (2009) 191107. DOI: https://doi.org/10.1063/1.3138155
M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96 (2010) 041909. DOI: https://doi.org/10.1063/1.3297883
Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, J. Appl. Phys. 104 (2008) 084518. DOI: https://doi.org/10.1063/1.3005886
Y.-Y. Fang, J. Tolle, R. Roucka, A.V.G. Chizmeshya, J. Kouvetakis, V.R. D'Costa, J. Menéndez, Appl. Phys. Lett. 90, 061915 (2007); J. Menëndez, J. Kouvetakis, Appl. Phys. Lett. 85 (2004) 1175.
D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64 (1990) 1943. DOI: https://doi.org/10.1103/PhysRevLett.64.1943
V. Le Thanh, Surf. Sci. 492 (2001) 255 and references therein. DOI: https://doi.org/10.1016/S0039-6028(01)01455-8
L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Pelange, and F. Evangelisti, Appl. Phys. Lett. 72 (1998) 3175. DOI: https://doi.org/10.1063/1.121584
H.-C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada, L.C. Kimerling, Appl. Phys. Lett. 75 (1999) 2009. DOI: https://doi.org/10.1063/1.125187
J.-M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J.M. Fédéli, M. Rouvière, L. Vivien, S. Laval, J. Appl. Phys. 95 (2004) 5905. DOI: https://doi.org/10.1063/1.1699524
J.-M. Hartmann, A.M. Papon, V. Destefanis, T. Billon, J. Cryst. Growth. 310 (2008) 5287. DOI: https://doi.org/10.1016/j.jcrysgro.2008.08.062
V. Le Thanh, V. Aubry-Fortuna, D. Bouchier, A. Younsi, and G. Hincelin, Surf. Sci. 369 (1996) 85. DOI: https://doi.org/10.1016/S0039-6028(96)00879-5
M. Halbwax, D. Bouchier, V. Yam, D. Débarre, Lam H. Nguyen, Y. Zheng, P. Rosner, M. Benamara, H. P. Strunk, C. Clerc, J. Appl. Phys. 97 (2005) 064907. DOI: https://doi.org/10.1063/1.1854723
V. Le Thanh, D. Bouchier, G. Hincelin, J. Appl. Phys. 87 (2000) 3700. DOI: https://doi.org/10.1063/1.372403
J. Liu, H. J. Kim, O. Hul’ko, Y. H. Xie, S. Sahni, P. Bandaru, and E. Yablonovitch, J. Appl. Phys. 96 (2004) 916. DOI: https://doi.org/10.1063/1.1738530
J. Liu, D. D. Cannon, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, Phys. Rev. B. 70 (2004) 155309.
L. Souriau, T. Atanasova, V. Terzieva, A. Moussa, M. Caymax, R. Loo, M. Meuris, and W. Vandervorst, J. Chem. Soc. 155 (2008) H677. DOI: https://doi.org/10.1149/1.2953495
M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66 (1995) 724. DOI: https://doi.org/10.1063/1.114112
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 23-12-2013
Published 20-01-2014