Vol. 23 No. 2 (2013)

Magnetic Properties and Giant Magnetocaloric Effect In Mn-based Heusler Compounds

Nguyen Huy Dan
Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi.
Nguyen Manh An
Hong Duc University, 565 Quang Trung, Dong Ve, Thanh Hoa

Published 10-06-2013


  • Giant magnetocaloric effect,
  • Heusler alloys,
  • Magnetic refrigeration

How to Cite

Dan, N. H., & An, N. M. (2013). Magnetic Properties and Giant Magnetocaloric Effect In Mn-based Heusler Compounds. Communications in Physics, 23(2), 139. https://doi.org/10.15625/0868-3166/23/2/2863


Magnetic properties and giant magnetocaloric effect (GMCE) of Mn-based Heusler compounds such as Co-Mn-Si, Ni-Mn-Sn, Ni-Mn-Sb have been investigated. The results show that the structure strongly influences on magnetic properties and GMCE of these alloys. The coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) orders is observed. The magnetic phase transitions can be controlled by changing composition and annealing condition of the alloys. GMCEs with large magnitude and wide working temperature range have been obtained on these alloys showing their application potential for magnetic refrigeration technology.


Download data is not yet available.


Metrics Loading ...


  1. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nature Mater. 4 (2005) 450.
  2. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Phys. Rev. B 72 (2005) 014412.
  3. P. J. Shamberger, and F. S. Ohuchi, Phys. Rev. B 79 (2009) 144407.
  4. V. V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V. V. Koledov, V. G. Shavrov, G. Wang, E. Palacios, J. Bartolomé, and R. Burriel, Phys. Rev. B 81 (2010) 214406.
  5. D. L. Schlagel, W. M. Yuhasz, K. W. Dennis, R. W. McCallum, and T. A. Lograsso, Scripta Mater. 59 (2008) 1083.
  6. Y. B. Yang, X. B. Ma, X. G. Chen, J. Z. Wei, R. Wu, J. Z. Han, H. L. Du, C. S. Wang, S. Q. Liu, Y. C. Yang, Y. Zhang, and J. B. Yang, J. Appl. Phys. 111 (2012) 07A916.
  7. E.C. Passamani, V.P. Nascimento, C. Larica, A.Y. Takeuchi, A.L. Alves, J.R. Provetib, M.C. Pereirac, and J.D. Fabrisd, J. Alloys Comp. 509 (2011) 7826.
  8. D. L. Schlagel, R. W. McCallum, T. A. Lograsso, J. Alloy Compd. 463 (2008) 38.
  9. B. Hernando, J. L. Sánchez Llamazares, J. D. Santos, V. M. Prida, D. Baldomir, D. Serantes, R. Varga, and J. González, Appl. Phys. Lett. 92 (2008) 132507.
  10. I. Babita, S. I. Patil, and S. Ram, J. Phys. D: Appl. Phys. 43 (2010) 205002.
  11. S. E. Muthu, N. V. R. Rao, M. M. Raja, S. Arumugam, K. Matsubayasi, and Y. Uwatoko, J. Appl. Phys. 110 (2011) 083902.
  12. K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, and D.J. Fray, Physical Review B 74 (2006) 224436.
  13. K. Morrison, A. Barcza, J.D. Moore, K.G. Sandeman, M.K. Chattopadhyay, S.B. Roy, A.D. Caplin and L.F Cohen, J. Phys. D: Appl. Phys. 43 (2010) 195001.
  14. K. Morrison, Y. Miyoshi, and J.D. Moore, Physical Review B 78 (2008) 134418.
  15. Mañosa L, Alonso D G, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M, Nature 9 (2010) 478.
  16. E. Bonnot, R. Romero, L. Mañosa, E. Vives and Planes, Phys. Rev. Lett. 100 (2008) 125901.
  17. X. Zhou, W. Li, H. P. Kunkel and G. Williams, J. Phys. Condens. Matter 16, (2004) L39.
  18. J. Barth, G. H. Fecher, B. Balke, T. Graf, C. Felser, A. Shkabko and A. Weidenkaff, Phil. Trans. R. Soc. A 369 (2011) 3588.