Epitaxial Growth of High Curie-Temperature Ge1-xMnx quantum dots on Si(001) by auto-assembly

Luong Thi Kim Phuong, An Manh Nguyen
Author affiliations

Authors

  • Luong Thi Kim Phuong Aix Marseille University, CNRS, CINaM-UMR 7325, F-13288 Marseille, France and Hong Duc University, 565 Quang Trung, Thanh Hoa
  • An Manh Nguyen Hong Duc University, 565 Quang Trung, Thanh Hoa

DOI:

https://doi.org/10.15625/0868-3166/24/1/3477

Keywords:

Ferromagnetic quantum dots, high Curie temperature, Stranski-Krastanov growth, spintronics

Abstract

We report on successful growth of epitaxial and high Curie-temperature Ge1-xMnx quantum dots on Si (001) substrates using the auto-assembled approach. By reducing the growth temperature down to 400 °C, we show that the Mn diffusion into the Si substrate can be neglected. No indication of secondary phases or clusters was observed. Ge1-xMnx quantum dots were found to be epitaxial and perfectly coherent to the Si substrate. We also observe ferromagnetic ordering in quantum dots at a temperature higher 320 K. It is believed that single-crystalline quantum dots exhibiting a high Curie temperature are potential candidates for spin injection at temperatures higher than room temperature.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

International Technology Roadmap for Semiconductors (ITRS), 2009 Edition, Emerging Research Materials, www.itrs.net

G. Scappucci, G. Capellini, B. Johnston,W. M. Klesse, J. A.Miwa, and M. Y. Simmons, Nano Lett. 11 (2011) 22721. DOI: https://doi.org/10.1021/nl200449v

Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. J. Jonker, Science 295 (2002) 651. DOI: https://doi.org/10.1126/science.1066348

N. Pinto, L. Morresi, M. Ficcadenti, R. Murri, F. D’Orazio, F. Lucari, L. Boarino, and G. Amato, Phys. Rev. B 72 (2005) 165203. DOI: https://doi.org/10.1103/PhysRevB.72.165203

A. P. Li, J. F. Wendelken, L. C. Feldman, J. R. Thompson, and H. H. Weitering, Appl. Phys. Lett. 86 (2005) 152507. DOI: https://doi.org/10.1063/1.1899768

F. Tsui, L. He, L. Ma, A. Tkachuk, Y. S. Chu, K. Nakajima, and T. Chikyow, Phys. Rev. Lett. 91 (2003)177203. DOI: https://doi.org/10.1103/PhysRevLett.91.177203

C. Bihler, C. Jaeger, T. Vallaitis, M. Gjukic, M. S. Brandt, E. Pippel, J. Woltersdorf, and U. Gosele, Appl. Phys. Lett. 88 (2006) 112506 DOI: https://doi.org/10.1063/1.2185448

L. Morresi, J. Ayoub, N. Pinto, M. Ficcadenti, R. Murri, A. Ronda, and I. Berbezier, Mater. Sci. Semicond. Process. 9 (2006) 836. DOI: https://doi.org/10.1016/j.mssp.2006.08.056

M. Passacantando, L. Ottaviano, F. D’Orazio, F. Lucari, M. D.DeBiase, G. Impellizzeri, and F. Priolo, Phys. Rev. B 73 (2006) 195207.

S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Phys. Rev. B 74 (2006) 214411. DOI: https://doi.org/10.1103/PhysRevB.74.214411

T. Devillers, M. Jamet, A. Barski, V. Poydenot, P. Bayle-Guillemaud, E. Bellet-Amalric, S. Cherifi, and J. Cibert, Phys. Rev. B 76 (2007) 205306

D. Bougeard, N. Sircar, S. Ahlers, V. Lang, G. Abstreiter, A. Trampert, J. M. LeBeau, S. Stemmer, D. W. Saxey, and A. Cerezo, Nano Lett. 9 (2009) 3743 DOI: https://doi.org/10.1021/nl901928f

Y.D. Park, A. Wilson, A.T. Hanbicki, J.E. Matteson, T. Ambrose, G. Spanos, B.T. Jonker, Appl. Phys. Lett. 78 (2001) 2739. DOI: https://doi.org/10.1063/1.1369151

S. Cho, S. Choi, S.C. Hong, Y. Kim, J.B. Ketterson, B.-J. Kim, Y.C. Kim, J.-H. Jung, Phys. Rev. B 66 (2002) 033303. DOI: https://doi.org/10.1103/PhysRevB.66.033303

A.P. Li, J.F. Wendelken, J. Shen, L.C. Feldman, J.R. Thompson, H.H. Weitering, Phys. Rev. B 72 (2005) 195205. DOI: https://doi.org/10.1103/PhysRevB.72.195205

L. Ottaviano, M. Passacantando, S. Picozzi, A. Continenza, R. Gunnella, A. Verna, G. Impellizzeri, F. Priolo, Appl. Phys. Lett. 88 (2006) 061907; DOI: https://doi.org/10.1063/1.2171485

M. Passacantando, L. Ottaviano, F. D'Orazio, F. Lucari, M. De Biase, G. Impellizzeri, F. Priolo, Phys. Rev. B 73 (2006) 195207. DOI: https://doi.org/10.1103/PhysRevB.73.195207

A. Verna, L. Ottaviano, M. Passacantando, S. Santucci, P. Picozzi, F. D'Orazio, F. Lucari, M. De Biase, R. Gunnella, M. Berti, A. Gasparotto, G. Impellizzeri, F. Priolo, Phys. Rev. B 74 (2006) 085204. DOI: https://doi.org/10.1103/PhysRevB.74.085204

C. Zeng, S. C. Erwin, L. C. Feldman, A. P. Li, R. Jin, Y. Song, J. R. Thompson, and H. H. Weitering, Appl. Phys. Lett. 83 (2002) 5002 DOI: https://doi.org/10.1063/1.1633684

S. Olive-Mendez, A. Spiesser, L. A. Michez, V. Le Thanh, A. Glachant, J. Derrien, T. Devillers, A. Barski, and M. Jamet, Thin Solid Films 517 (2008) 191. DOI: https://doi.org/10.1016/j.tsf.2008.08.090

M. Gajdzik, C. Surgers, M. T. Kelemen, and H. V. Lohneysen, J. Magn. Magn. Mater. 221 (2000) 248 DOI: https://doi.org/10.1016/S0304-8853(00)00494-7

A. Spiesser, I. Slipukhina, M.-T. Dau, E. Arras, V. Le Thanh, L. Michez, P. Pochet, H. Saito, S. Yuasa, M. Jamet, J. Derrien, Phys. Rev. B 84 (2001) 165203.

A. Spiesser, V. Le Thanh, S. Bertaina, L.A. Michez, Appl. Phys. Lett. 99 (2011) 121904. DOI: https://doi.org/10.1063/1.3638472

M.T. Dau, V. Le Thanh, T.G. Le, A. Spiesser, M. Petit, L.A. Michez, R. Daineche, Appl. Phys. Lett. 99 (2011) 151908. DOI: https://doi.org/10.1063/1.3651488

M. T. Dau, V. Le Thanh, L. A. Michez, M. Petit, T. G. Le, O. Abbes, A. Spiesser, and A. Ranguis, New. J. Phys. 14 (2012) 103020. DOI: https://doi.org/10.1088/1367-2630/14/10/103020

O. Abbes, A. Portavoce, V. Le Thanh, C. Girardeaux, L. Michez, Appl. Phys. Lett. 103 (2013) 172405. DOI: https://doi.org/10.1063/1.4827100

V. Le Thanh, A. Spiesser, M.T. Dau, S.F. Olive-mendez, L. A Michez, M. Petit, Advances in Natural Sciences : Nanoscience and Nanotechnology 4 (2013) 043002 DOI: https://doi.org/10.1088/2043-6262/4/4/043002

D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64 (1990) 1943. DOI: https://doi.org/10.1103/PhysRevLett.64.1943

Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally, Phys. Rev. Lett. 65 (1990) 1020. DOI: https://doi.org/10.1103/PhysRevLett.65.1020

V. Le Thanh, Surf. Sci. 492 (2001) 255 DOI: https://doi.org/10.1016/S0039-6028(01)01455-8

V. Le Thanh, P. Boucaud, D. Débarre, Y. Zheng, D. Bouchier, and J. M. Lourtioz, Phys. Rev. B 58 (1998) 13115 DOI: https://doi.org/10.1103/PhysRevB.58.13115

G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science 279 (1998) 353 DOI: https://doi.org/10.1126/science.279.5349.353

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Le Thanh, K. Berwick, Phys. Rev. B 73 (2006) 075322 DOI: https://doi.org/10.1103/PhysRevB.73.075322

U. Denker, M. Stoffel, and O. G. Schmidt, Phys. Rev. Lett. 90 (2003)196102 DOI: https://doi.org/10.1103/PhysRevLett.90.196102

T.K.P. Luong, M.T. Dau, M.A. Zrir, M. Stoffel, V. Le Thanh, M. Petit, A. Ghrib, M. El Kurdi, P. Boucaud, H. Rinnert, J. Murota, J. Appl. Phys. 114 (2013) 083504. DOI: https://doi.org/10.1063/1.4818945

F. Xiu, Y. Wang, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou, and K. L. Wang, Nat. Mater. 9 (2010) 337 DOI: https://doi.org/10.1038/nmat2716

J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, Appl. Phys. Lett. 101 (2012) 242407 DOI: https://doi.org/10.1063/1.4770384

T. G. Le, D. N. H. Nam, M. T. Dau, T. K. P. Luong, N. V. Khiem, V. Le Thanh, L. Michez, and J. Derrien, J. Phys.: Conf. Ser. 292 (2011) 012012 DOI: https://doi.org/10.1088/1742-6596/292/1/012012

Downloads

Published

23-03-2014

How to Cite

[1]
L. T. K. Phuong and A. M. Nguyen, “Epitaxial Growth of High Curie-Temperature Ge1-xMnx quantum dots on Si(001) by auto-assembly”, Comm. Phys., vol. 24, no. 1, p. 69, Mar. 2014.

Issue

Section

Papers
Received 11-12-2013
Published 23-03-2014