Mobility Enhancement in Square Quantum Wells: Symmetric Modulation of the Envelop Wave Function

Doan Nhat Quang, Nguyen Huyen Tung, Nguyen Trung Hong, Tran Thi Hai
Author affiliations

Authors

  • Doan Nhat Quang Center for Theoretical Physics, Institute of Physics, VAST
  • Nguyen Huyen Tung Institute of Engineering Physics, Hanoi University of Technology
  • Nguyen Trung Hong Institute of Engineering Physics, Hanoi University of Technology
  • Tran Thi Hai Department of Engineering and Technology, Hong Duc University

DOI:

https://doi.org/10.15625/0868-3166/20/3/2212

Abstract

We present a theoretical study of the effects from symmetric modulation of the envelop wave function on quantum transport in square quantum wells (QWs). Within the variational approach we obtain analytic expressions for the carrier distribution and their scattering in symmetric two-side doped square QWs. Roughness-induced scattering are found significantly weaker than those in the asymmetric one-side doped counterpart. Thus, we propose symmetric modulation of the wave function as an efficient method for enhancement of the roughness-limited QW mobility. Our theory is able to well reproduce the recent experimental data about low-temperature transport of electrons and holes in two-side doped square QWs, e.g., the mobility dependence on the channel width, which have not been explained so far.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54 (1982) 437. DOI: https://doi.org/10.1103/RevModPhys.54.437

M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80 (1996) 2234. DOI: https://doi.org/10.1063/1.363052

T. Dziekan,P. Zahn, V. Meded, and S. Mirbt, Phys. Rev. B 75, 195213 (2007). DOI: https://doi.org/10.1103/PhysRevB.75.195213

M. V. Fischetti, F. G´amiz, and W. H¨ansch, J. Appl. Phys. 92 (2002) 7320. DOI: https://doi.org/10.1063/1.1521796

J. E. Schirbir, I. J. Fritz, and L. R. Dawson, Appl. Phys. Lett. 46 (1985) 187. DOI: https://doi.org/10.1063/1.95678

M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald,

and D. A. Antoniadis, Appl. Phys. Lett. 79 (2001) 3344. DOI: https://doi.org/10.1063/1.1417515

M. Myronov, T. Irisawa, S. Koh, O. A. Mironov, T. E. Whall, E. H. C. Parker, and Y. Shiraki, J.

Appl. Phys. 97 (2005) 083701. DOI: https://doi.org/10.1063/1.1862315

R. E. Belford, B. P. Guo, Q. Xu, S. Sood, A. A. Thrift, A. Teren, A. Acosta, L. A. Bosworth, and J.

S. Zell, J. Appl. Phys. 100 (2006) 064903. DOI: https://doi.org/10.1063/1.2335678

J. D. Sau and M. L. Cohen, Phys. Rev. B 75 (2007) 045208. DOI: https://doi.org/10.1103/PhysRevB.75.045208

DOAN NHAT QUANG, NGUYEN HUYEN TUNG, NGUYEN TRUNG HONG, AND TRAN THI HAI

R. Dingle, H. L. St¨ormer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33 (1978) 665. DOI: https://doi.org/10.1063/1.90457

T. Tsuchiya and T. Ando, Phys. Rev. B 48 (1993) 4599. DOI: https://doi.org/10.1103/PhysRevB.48.4599

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique,

Paris, 1988).

R. M. Feenstra and M. A. Lutz, J. Appl. Phys. 78 (1995) 6091. DOI: https://doi.org/10.1063/1.360549

D. N. Quang, V. N. Tuoc, N. H. Tung, and T. D. Huan, Phys. Rev. Lett. 89 (2002) 077601; Phys. DOI: https://doi.org/10.1103/PhysRevLett.89.077601

Rev. B 68 (2003) 153306.

D. N. Quang and N. H. Tung, Phys. Rev. B 77 (2008) 125335. DOI: https://doi.org/10.1103/PhysRevB.77.125335

D. N. Quang, N. H. Tung, D. T. Hien, and T. T. Hai, J. Appl. Phys. 104 (2008) 113711. DOI: https://doi.org/10.1063/1.3039214

Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Thiel, and G. P. Watson, Appl. Phys.

Lett. 63 (1993) 2263. DOI: https://doi.org/10.1063/1.110547

K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, Appl. Phys. Lett. 69 (1996) 2554. DOI: https://doi.org/10.1063/1.117737

H. C¸ elik, M. Cankurtaran, A. Bayrakli, E. Tiras, and N. Balkan, Semicon. Sci. Technol. 12 (1997) DOI: https://doi.org/10.1088/0268-1242/12/4/008

N. Balkan, R. Gupta, M. Cankurtaran, H. C¸ elik, A. Bayrakli, E. Tiras, and M. C¸ . Arikan, Superlattices

Microstruct. 22 (1997) 263. DOI: https://doi.org/10.1017/S0361233300000132

M. Cankurtaran, H. C¸ elik, E. Tiras, A. Bayrakli, and N. Balkan, Phys. Status Solidi B 207 (1998) DOI: https://doi.org/10.1002/(SICI)1521-3951(199805)207:1<139::AID-PSSB139>3.0.CO;2-M

R. J. H. Morris, T. J. Grasby, R. Hammond, M. Myronov, O. A. Mironov, D. R. Leadley, T. E. Whall,

E. H. C. Parker, M. T. Currie, C. W. Leitz, and E. A. Fitzgerald, Semicond. Sci. Technol. 19 (2004)

L106.

C. Gerl, S. Schmult, H.-P. Tranitz, C. Mitzkus, and W. Wegscheider, Appl. Phys. Lett. 86 (2005) DOI: https://doi.org/10.1063/1.1926409

C. Gerl, S. Schmult, U. Wurstbauer, H.-P. Tranitz, C. Mizkus, and W. Wegscheider, Physica E 32

(2006) 258.

B. R¨ossner, H. von K¨anel, D. Chrastina, G. Isella, and B. Batlogg, Thin Solid Films 508 (2006) 351. DOI: https://doi.org/10.1016/j.tsf.2005.07.341

M. Myronov, K. Sawano, and Y. Shiraki, Appl. Phys. Lett. 88 (2006) 252115. DOI: https://doi.org/10.1063/1.2215633

F. Szmulowicz, S. Elhamri, H. J. Haugan, G. J. Brown, and W. C. Mitchel, J. Appl. Phys. 101 (2007) DOI: https://doi.org/10.1063/1.2434944

C. G. Van de Walle and R. M. Martin, Phys. Rev. B 34 (1986) 5621. DOI: https://doi.org/10.1103/PhysRevB.34.5621

A. Gold, Phys. Rev. B 35 (1987) 723; 38 (1988) 10798. DOI: https://doi.org/10.1103/PhysRevB.38.10798

A. Kahan, M. Chi, and L. Friedman, J. Appl. Phys. 75, 8012 (1994). DOI: https://doi.org/10.1063/1.356540

A. Gold, J. Appl. Phys. 1033 (2008) 043718. DOI: https://doi.org/10.1063/1.2841723

Downloads

Published

15-08-2010

How to Cite

[1]
D. N. Quang, N. H. Tung, N. T. Hong and T. T. Hai, Mobility Enhancement in Square Quantum Wells: Symmetric Modulation of the Envelop Wave Function, Comm. Phys. 20 (2010) 193. DOI: https://doi.org/10.15625/0868-3166/20/3/2212.

Issue

Section

Papers
Published 15-08-2010