Surface ferromagnetism of lead-free ferroelectric bismuth sodium titanate materials
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/19184Keywords:
Bi0.5Na0.5TiO3, surface defects, multiferroic, magnetism, lead-free ferroelectricAbstract
The role of complex surface defect on the magnetic at the (110) surface of bismuth sodium titanate (Bi0.5Na0.5TiO3) was discussed based on the first-principles calculation. The first-principle calculations for various types of surface defects exhibited the existence of magnetic moments for selected chemical and position defects. Specifically, Na and Bi vacancies induced large magnetic moments of 0.52 µB/f.u and 0.50 µB/f.u, respectively, which were larger than that of Ti vacancies of 0.01 µB/f.u. Interestingly, oxygen vacancies did not induce local magnetic moments. Furthermore, significant magnetic moments of 0.50 µB/f.u and 0.49 µB/f.u were obtained for Na and Bi interstitial defects, while the local magnetic moments were slightly achieved around 0.03 µB/f.u and 0.04 µB/f.u for Ti and O interstitial defects, respectively. Anti-site defects between Bi and Na at A-site in perovskite ABO3 structure exhibited magnetic moments of 0.55 µB/f.u for Na anti-site at Bi-site and 0.39 µB/f.u for Bi anti-site at Na-site. Interestingly, anti-site defects between the A-site and B-site in perovskite ABO3 structure resulted in larger magnetic moments, with values of 0.57 µB/f.u and 0.53 µB/f.u obtained for Ti anti-site defects at the Bi-site and Na-site, respectively. Additionally, magnetic moments of 0.50 µB/f.u and 0.54 µB/f.u were achieved for Bi and Na anti-site defects at the Ti-site, respectively. We expected that our work further contributed to the understanding of the role of surface defects in the magnetism of Bi0.5Na0.5TiO3 materials in integrating ferromagnetic properties into lead-free ferroelectric materials for smart electronic device applications.
Downloads
Metrics
References
N. D. Quan, L. H. Bac, D. V. Thiet, V. N. Hung, and D. D. Dung, Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials, Adv. Mater. Sci. Eng. 2014, 365391 (2014). https://doi.org/10.1155/2014/365391.
S. Zhang, B. Malic, J. F. Li, and J. Rodel, Lead-free ferroelectric materials: Prospective applications, J. Mater. Res. 36, 985-995 (2021). https://doi.org/10.1557/s43578-021-00180-y.
G. A. Prinz, Magnetoelectronics applications, J. Magn. Magn. Mater. 200 (1999) 57-68. https://doi.org/10.1016/S0304-8853(99)00335-2.
M. Kumar, S. Shankar, A. Kumar, A. Anshul, M. Jayasimhadri, and O. P. Thakur, Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges, J. Mater. Sci.: Mater. Electron. 31 (2020) 19487-19510. https://doi.org/10.1007/s10854-020-04574-2.
N. A. Hill, Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B 104 (2000) 6694-6709. https://doi.org/10.1021/jp000114x.
N. A. Benedek, and C. J. Fennie, Why are there so few perovskite ferroelectrics?, J. Phys. Chem. C 117 (2013) 13339-13349. https://doi.org/10.1021/jp402046t.
I. H. Lone, J. Aslam, N. R. E. Radwan, A. H. Bashal, A. F. A. Ajlouni, and A. Akhter, Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetis, Nanoscale Res. Lett. 14 (2019) 142. https://doi.org/10.1186/s11671-019-2961-7.
L. T. H. Thanh, N. B. Doan, N. Q. Dung, L. V. Cuong, L. H. Bac, N. A. Duc, P. Q. Bao, and D. Dung, Origin of room temperature ferromagnetism in Cr-doped lead-free ferroelectric Bi0.5Na0.5TiO3 materials, J. Electron. Mater. 46 (2017) 3367-3372. https://doi.org/10.1007/s11664-016-5248-0
D. D. Dung, N. T. Hung, and D. Odkhuu, Structure, optical and magnetic properties of new Bi0.5Na0.5TiO3-SrMnO3- solid solution materials, Sci. Rep. 9 (2019) 18186. https://doi.org/10.1038/s41598-019-54172-4
D. E. J. Ruth, R. A. U. Rahman, B. Sundarakannan, and M. Ramaswamy, Room temperature multiferroicity and magnetoelectric coupling in Na-deficient sodium bismuth titanate, Appl. Phys. Lett. 114 (2019) 062902. https://doi.org/10.1063/1.5078575
R. Pattanayak, and S. Panigrahi, Electric and magnetic transport analysis of Na0.5Bi0.5TiO3 nanoparticles for temperature and magnetoimpedance sensor applications, J. Magn. Magn. Mater. 481 (2019) 162-169. https://doi.org/10.1016/j.jmmm.2019.03.019
L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qiu, and J. Hu, Room-temperature magnetoelectric coupling in nanocrystalline Na0.5Bi0.5TiO3, J. Appl. Phys. 116 (2014) 083909. https://doi.org/10.1063/1.4893720.
L. Ju, T. Xu, Y. Zhang, C. Shi, and L. Sun, Ferromagnetism of Na0.5Bi0.5TiO3(100) surface with O2 adsoprtion, Appl. Surf. Sci. 412 (2017) 77-84. https://doi.org/10.1016/j.apsusc.2017.03.225 .
Y. Zhang, J. Hu, F. Gao, H. Liu, and H. Qin, Ab initio calculation for vacancy-induced magnetism in ferroelectric Na0.5Bi0.5TiO3, Comp. Theor. Chem. 967 (2011) 284-288. https://doi.org/10.1016/j.comptc.2011.04.030
V. T. Lam, N. H. Thoan, N. N. Trung, D. Q. Van, and D. D. Dung, Surface ferromagnetism of complex defects lead-free ferroeletric Bi0.5Na0.5TiO3 materials, Surf. Inter. Ana. 55 (2023) 243-255. https://doi.org/10.1002/sia.7184
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220 (2005) 567-570. https://doi.org/10.1524/zkri.220.5.567.65075
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
H. Lü, S. Wang, and X. Wang, The electronic properties and lattice dynamics of (Na0.5Bi0.5)TiO3: From cubic to tetragonal and rhombohedral phases, J. Appl. Phys. 115 (2014) 124107. https://doi.org/10.1063/1.4869733.
G. O. Jones, and P. A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Crystallogr. B 58 (2002) 168. https://doi.org/10.1107/S0108768101020845.
E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Gratzel, and F. D. Angelis, First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications, J. Phys. Chem. C 117 (2013) 13902-13913. https://doi.org/10.1021/jp4048659.
J. Padilla, and D. Vanderbilt, Ab initio study of BaTiO3 surfaces, Phys. Rev. B 56 (1997) 1625. https://doi.org/10.1103/PhysRevB.56.1625.
S. Behara, G. S. Priyanga, and T. Thomas, Strain-induced effects in the electronic and optical properties of Na0.5Bi0.5TiO3: An ab-initio study, Mater. Today Comm. 24 (2020) 101348. https://doi.org/10.1016/j.mtcomm.2020.101348.
C. He, Y. Zhang, L. Sun, J. Wang, T. Wu, F. Xu, C. Du, K. Zhu, and Y. Liu, Electrical and optical properties of Nd3+-doped Na0.5Bi0.5TiO3 ferroelectric single crystal, J. Phys. D: Appl. Phys. 46 (2013) 245104. https://doi.org/10.1088/0022-3727/46/24/245104
D. D. Dung, N. H. Thoan, N. Q. Dung, N. H. Lam, P. V. Vinh, V. T. Lam, P. D. Luong, and D. Q. Van, Structural, optical, and magnetic properties of a new complex (1−x)Bi1/2Na1/2TiO3 + xMgNiO3−δ solid solution system, Appl. Phys. A 128 (2022) 129. https://doi.org/10.1007/s00339-021-05255-5.
D. D. Dung, N. H. Thoan, P. V. Vinh, N. H. Lam, V. T. Lam, P. D. Luong, D. Q. Van, and D. Odkhuu, Magnetic properties of new (1−x)Bi1/2Na1/2TiO3+xBaNiO3−δ solid solution materials, Appl. Phys. A 128 (2022) 168. https://doi.org/10.1007/s00339-022-05281-x.
N. T. Hung, N. H. Lam, A. D. Nguyen, L. H. Bac, N. N. Trung, D. D. Dung, Y. S. Kim, N. Tsogbadrakh, T. Ochirkhuyag, and D. Odkhuu, Intrinsic and tunable ferromagnetism in Bi0.5Na0.5TiO3 through CaFeO3- modification, Sci. Rep. 10 (2020) 6189. https://doi.org/10.1038/s41598-020-62889-w
D. D. Dung, N. H. Lam, A. D. Nguyen, N. N. Trung, N. V. Duc, N. T. Hung, Y. S. Kim, and D. Odkhuu, Experimental and theoretical studies on induced ferromagnetism of new (1-x)Na0.5Bi0.5TiO3+xBaFeO3- solid solution, Sci. Rep. 11 (2021) 8908. https://doi.org/10.1038/s41598-021-88377-3
D. D. Dung, N. H. Thoan, N. Q. Dung, P. V. Vinh, N. H. Lam, V. T. Lam, P. D. Luong, and D. Q. Van, Magnetic properties of a (1-x)Bi0.5Na0.5TiO3+xCaNiO3- solid solution system prepared by sol-gel technique, J. Electron. Mater. 51 (2022) 1905-1921. https://doi.org/10.1007/s11664-022-09457-2
D. D. Dung, N. H. Thoan, N. Q. Dung, H. H. Lam, V. T. Lam, P. V. Vinh, P. D. Luong, and D. Q. Van, Synthesis and characterization of (1-x)Bi1/2Na1/2TiO3+xSrNiO3- solid solution system, J. Electron. Mater. 51 (2022) 2716-2731. https://doi.org/10.1007/s11664-022-09534-6
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 19-12-2023
Published 23-04-2024