Temperature-mediated Phase Transformation and Optical Properties of Tungsten Oxide Nanostructures Prepared by Facile Hydrothermal Method


  • Ngoc Linh Pham
  • Thi Lan Anh Luu School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
  • Thi Tuyet Mai Nguyen School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
  • Van Thang Pham School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
  • Huu Lam Nguyen School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
  • Cong Tu Nguyen School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam https://orcid.org/0000-0002-1970-0571




tungsten oxide, optical bandgap, reaction temperature, phase transformation, facile hydrothermal method


Different tungsten oxide nanocrystals were synthesized via facile hydrothermal process – one-step and free of additives - at different reaction temperatures and a highly acidic environment. The phase transformation of samples, followed by the change of morphology and optical properties, was observed as the reaction temperature varied from room temperature to 220oC. The crystal phase transformed from monoclinic WO3∙2H2O to orthorhombic WO3∙H2O, then to monoclinic WO3 as the reaction temperature increased from room temperature to 100 ⁰C, then to 220 ⁰C. Corresponding to the phase transformation, the optical bandgap increased from 2.43 eV to 2.71 eV, and the morphology varied from nanoplate to nanocuboid. The effect of the reaction temperature on the phase transformation was assigned to the dehydration process, which became stronger as the reaction temperature increased. These results gave an insight into the phase transformation and implied a simple method for manipulating the crystal phase and morphology of tungsten oxide nanostructure for various applications.


Download data is not yet available.


Metrics Loading ...


D. Bonardo, N. L. W. Septiani, F. Amri, Estananto, S. Humaidi, Suyatman et al., Review—recent development of WO3 for toxic gas sensors applications, J. Electrochem. Soc. 168 (2021) 107502 DOI: https://doi.org/10.1149/1945-7111/ac0172

G. Mineo, K. Moulaee, G. Neri, S. Mirabella and E. Bruno, H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods, Sens. Actuators B Chem. 348 (2021) 130704. DOI: https://doi.org/10.1016/j.snb.2021.130704

S. Zeb, G. Sun, Y. Nie, H. Xu, Y. Cui and X. Jiang, Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications, Mater. Adv. 2 (2021) 6839. DOI: https://doi.org/10.1039/D1MA00418B

J. Qiu, F. Xu, B. Jin, Y. Sun and J. Wang, Hierarchical wo3 microflowers with tailored oxygen vacancies for boosting photocatalytic dye degradation, New J. Chem. 45 (2021) 21074. DOI: https://doi.org/10.1039/D1NJ03912A

M. G. Peleyeju and E. L. Viljoen, Wo3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water – a review, J. Water Process Eng. 40 (2021) 101930. DOI: https://doi.org/10.1016/j.jwpe.2021.101930

K. Thummavichai, Y. Xia and Y. Zhu, Recent progress in chromogenic research of tungsten oxides towards energy-related applications, Prog. Mater. Sci. 88 (2017) 281. DOI: https://doi.org/10.1016/j.pmatsci.2017.04.003

P. A. Shinde and S. C. Jun, Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage, ChemSusChem 13 (2020) 11; [https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cssc.201902071]. DOI: https://doi.org/10.1002/cssc.201902071

S. Cong, Z. Wang, W. Gong, Z. Chen, W. Lu, J. R. Lombardi et al., Electrochromic semiconductors as colorimetric sers substrates with high reproducibility and renewability, Nat. Commun. 10 (2019) 1. DOI: https://doi.org/10.1038/s41467-019-08656-6

M. Jamali and F. S. Tehrani, Thermally stable wo3 nanostructure synthesized by hydrothermal method without using surfactant, Mater. Sci. Eng. B 270 (2021) 115221. DOI: https://doi.org/10.1016/j.mseb.2021.115221

N. L. Pham, T. L. A. Luu, H. L. Nguyen and C. T. Nguyen, Effects of acidity on the formation and adsorption activity of tungsten oxide nanostructures prepared via the acid precipitation method, Mater. Chem. Phys. 272 (2021) 125014. DOI: https://doi.org/10.1016/j.matchemphys.2021.125014

M. Jamali and F. S. Tehrani, Effect of synthesis route on the structural and morphological properties of WO3 nanostructures, Mater. Sci. Semicond. Process. 107 (2020) 104829. DOI: https://doi.org/10.1016/j.mssp.2019.104829

G. Adilakshmi, A. S. Reddy, P. S. Reddy and C. S. Reddy, Electron beam evaporated nanostructure wo3 films for gas sensor application, Mater. Sci Engineering: B 273 (2021) 115421. DOI: https://doi.org/10.1016/j.mseb.2021.115421

F. Andrei, A. Andrei, R. Birjega, E. N. Sirjita, A. I. Radu, M. Dinescu et al., The influence of the structural and morphological properties of wo3 thin films obtained by pld on the photoelectrochemical water-splitting reaction efficiency, Nanomaterials 11 (2021) 110. DOI: https://doi.org/10.3390/nano11010110

K. Ghosh, A. Roy, S. Tripathi, S. Ghule, A. K. Singh and N. Ravishankar, Insights into nucleation, growth and phase selection of wo 3: morphology control and electrochromic properties, J. Mater. Chem. C 5 (2017) 7307. DOI: https://doi.org/10.1039/C7TC01714F

L. T. L. Anh, P. T. Phong, H. V. Phuong, D. V. Truong, L. X. Truong, P. T. Son et al., Tailoring the structure and morphology of wo3 nanostructures by hydrothermal method, Vietnam J. Sci. Technol. 56 (2018) 127. DOI: https://doi.org/10.15625/2525-2518/56/1A/12513

H. Xu, J. Gao, M. Li, Y. Zhao, M. Zhang, T. Zhao et al., Mesoporous wo3 nanofibers with crystalline framework for high-performance acetone sensing, Front. Chem. 7 (2019) 266. DOI: https://doi.org/10.3389/fchem.2019.00266

A. V. Nikam, B. L. V. Prasad and A. A. Kulkarni, Wet chemical synthesis of metal oxide nanoparticles: a review, CrystEngComm 20 (2018) 5091. DOI: https://doi.org/10.1039/C8CE00487K

S. Adhikari and D. Sarkar, Hydrothermal synthesis and electrochromism of wo 3 nanocuboids, RSC Adv. 4 (2014) 20145. DOI: https://doi.org/10.1039/C4RA00023D

L. Wang, M. Huang, Z. Chen, Z. Yang, M. Qiu, K. Wang et al., ph-controlled assembly of three-dimensional tungsten oxide hierarchical nanostructures for catalytic oxidation of cyclohexene to adipic acid, CrystEngComm 18 (2016) 8688. DOI: https://doi.org/10.1039/C6CE01940D

C. T. Nguyen, N. L. Pham, T. T. Nguyen, D. T. Do and T. L. A. Luu, Effect of reaction time on the phase transformation and photocatalytic activity under solar irradiation of tungsten oxide nanocuboids prepared via facile hydrothermal method, Phase Transitions 94 (2021) 651. DOI: https://doi.org/10.1080/01411594.2021.1954646

F. S. Tehrani, H. Ahmadian and M. Aliannezhadi, Hydrothermal synthesis and characterization of WO3 nanostructures: Effect of reaction time, Mater. Res. Express 7 (2020) 015911. DOI: https://doi.org/10.1088/2053-1591/ab66fc

H. Zhang, Z. Liu, J. Yang, W. Guo, L. Zhu and W. Zheng, Temperature and acidity effects on wo3 nanostructures and gas-sensing properties of wo3 nanoplates, Mater. Res. Bull. 57 (2014) 260. DOI: https://doi.org/10.1016/j.materresbull.2014.06.013

Y. S. Liu, X. L. Xi, Z. R. Nie, L. Y. Zhao and Y. S. Fan, Effect of hydrothermal conditions on crystal structure, morphology and visible-light driven photocatalysis of wo3 nanostructures, Mater. Sci. Forum 993 (2020) 893. DOI: https://doi.org/10.4028/www.scientific.net/MSF.993.893

T. Nagyne-Kov ´ acs, I. E. Luk ´ acs, A. Szab ´ o, K. Hernadi, T. Igricz, K. L ´ aszl ´ o et al., ´ Effect of ph in the hydrothermal preparation of monoclinic tungsten oxide, J. Solid State Chem. 281 (2020) 121044 DOI: https://doi.org/10.1016/j.jssc.2019.121044

K. Yang, X. Li, C. Yu, D. Zeng, F. Chen, K. Zhang et al., Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction, Chinese J. Catal. 40 (2019) 796. DOI: https://doi.org/10.1016/S1872-2067(19)63290-0

M. Kang, J. Liang, F. Wang, X. Chen, Y. Lu and J. Zhang, Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation, Materials Research Bulletin 121 (2020) 110614. DOI: https://doi.org/10.1016/j.materresbull.2019.110614

X. D. Liu, Q. Yang, L. Yuan, D. Qi, X. Wei, X. Zhou et al., Oxygen vacancy-rich WO3 heterophase structure: A trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour, Chem. Eng. J. 425 (2021) 131431. DOI: https://doi.org/10.1016/j.cej.2021.131431

G. Williamson and W. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22. DOI: https://doi.org/10.1016/0001-6160(53)90006-6

C. T. Nguyen, T. P. Pham, T. L. A. Luu, X. S. Nguyen, T. T. Nguyen, H. L. Nguyen et al., Constraint effect caused by graphene on in situ grown gr@ WO3-nanobrick hybrid material, Ceram. Int. 46 (2020) 8711. DOI: https://doi.org/10.1016/j.ceramint.2019.12.108

M. Daniel, B. Desbat, J. Lassegues, B. Gerand and M. Figlarz, Infrared and raman study of WO3 tungsten trioxides and WO3, xh2o tungsten trioxide tydrates, J. Solid State Chem. 67 (1987) 235. DOI: https://doi.org/10.1016/0022-4596(87)90359-8

H. S. Nguyen, T. L. A. Luu, H. T. Bui, T. T. Nguyen, H. L. Nguyen and C. T. Nguyen, Facile synthesis of in situ cnt/WO3·h2o nanoplate composites for adsorption and photocatalytic applications under visible light irradiation, Semicond. Sci. Technol. 36 (2021) 095010. DOI: https://doi.org/10.1088/1361-6641/ac1312

V. T. Nguyen, H. S. Nguyen, V. T. Pham, T. T. M. Nguyen, T. L. A. Luu, H. L. Nguyen et al., Tungsten oxide nanoplates: facile synthesis, controllable oxygen deficiency and photocatalytic activity, Commun. Phys. 30 (2020) 319. DOI: https://doi.org/10.15625/0868-3166/30/4/14425

M. Henry, J. P. Jolivet and J. Livage, Aqueous chemistry of metal cations: hydrolysis, condensation and complexation, Chemistry, Spectroscopy and Applications of Sol-Gel Glasses (1992) 153. DOI: https://doi.org/10.1007/BFb0036968

L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan et al., High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3· 2h2o ultrathin nanosheets, Sci. Rep. 3 (2013) 1. DOI: https://doi.org/10.1038/srep01936

S. Wu, Y. Li, X. Chen, J. Liu, J. Gao and G. Li, Fabrication of WO3· 2h2o nanoplatelet powder by breakdown anodization, Electrochem. Commun. 104 (2019) 106479. DOI: https://doi.org/10.1016/j.elecom.2019.106479

G. Akerlof and H. Oshry, The dielectric constant of water at high temperatures and in equilibrium with its vapor, J. Am. Chem. Soc. 72 (1950) 2844. DOI: https://doi.org/10.1021/ja01163a006

B. B. Owen, R. C. Miller, C. E. Milner and H. L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2, J. Phys. Chem. 65 (1961) 2065. DOI: https://doi.org/10.1021/j100828a035

S. Adhikari, K. S. Chandra, D.-H. Kim, G. Madras and D. Sarkar, Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants, Adv. Powder Technol. 29 (2018) 1591. DOI: https://doi.org/10.1016/j.apt.2018.03.024

G. W. Thomson, The antoine equation for vapor-pressure data., Chem. Rev. 38 (1946) 1. DOI: https://doi.org/10.1021/cr60119a001

Y. Fan, X. Xi, Y. Liu, Z. Nie, Q. Zhang and L. Zhao, Growth mechanism of immobilized WO3 nanostructures in different solvents and their visible-light photocatalytic performance, J. Phys. Chem. Solids 140 (2020) 109380. DOI: https://doi.org/10.1016/j.jpcs.2020.109380

N. H. Son, N. G. Nam, N. T. Anh, T. N. Bach, L. T. L. Anh, N. T. Tung et al., Functionalization-mediated preparation via acid precipitation and photocatalytic activity of in situ ag2wo4@ WO3. h2o nanoplates, ECS J. Solid State Sci. Technol. 10 (2021) 054009. DOI: https://doi.org/10.1149/2162-8777/ac029a

J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang, S. Liu et al., Crystal transformation of 2d tungstic acid h2wo4 to WO3 for enhanced photocatalytic water oxidation, J. Colloid Interface Sci. 514 (2018) 576. DOI: https://doi.org/10.1016/j.jcis.2017.12.066

K. Nishiyama, J. Sasano, S. Yokoyama and M. Izaki, Electrochemical preparation of tungsten oxide hydrate films with controlled bandgap energy, Thin Solid Films 625 (2017) 29. DOI: https://doi.org/10.1016/j.tsf.2017.01.044

Y. Yang, J. Chen, X. Liu, M. Qiu, L. Liu and F. Gao, Oxygen vacancy-mediated wo 3 nanosheets by etched {200} facets and the efficient visible-light photocatalytic oxygen evolution, New J. Chem. 43 (2019) 16391. DOI: https://doi.org/10.1039/C9NJ04286E

W. Zhu, F. Sun, R. Goei and Y. Zhou, Facile fabrication of rgo-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole, Appl. Catal. B Environ. 207 (2017) 93. DOI: https://doi.org/10.1016/j.apcatb.2017.02.012

J. Zhou, S. Lin, Y. Chen, and A. M. Gaskov. Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance, Appl. Surf. Sci. 403 (2017) 274. DOI: https://doi.org/10.1016/j.apsusc.2017.01.209

P. P. Gonzalez-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera et al., ´ Optical band-gap determination of nanostructured WO3 film, Applied Physics Letters 96 (2010) 061909. [https://doi.org/10.1063/1.3313945] DOI: https://doi.org/10.1063/1.3313945




How to Cite

Pham, N. L., Luu, T. L. A., Nguyen, T. T. M., Pham, V. T. ., Nguyen, H. L., & Nguyen, C. T. (2022). Temperature-mediated Phase Transformation and Optical Properties of Tungsten Oxide Nanostructures Prepared by Facile Hydrothermal Method . Communications in Physics, 32(3), 307. https://doi.org/10.15625/0868-3166/16754




Most read articles by the same author(s)