Vol. 32 No. 3 (2022)

Temperature-mediated Phase Transformation and Optical Properties of Tungsten Oxide Nanostructures Prepared by Facile Hydrothermal Method

Thi Lan Anh Luu
School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
Thi Tuyet Mai Nguyen
School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
Van Thang Pham
School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
Huu Lam Nguyen
School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
Cong Tu Nguyen
School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam

Published 03-06-2022


  • tungsten oxide,
  • optical bandgap,
  • reaction temperature,
  • phase transformation,
  • facile hydrothermal method

How to Cite

Pham, N. L., Luu, T. L. A., Nguyen, T. T. M., Pham, V. T. ., Nguyen, H. L., & Nguyen, C. T. (2022). Temperature-mediated Phase Transformation and Optical Properties of Tungsten Oxide Nanostructures Prepared by Facile Hydrothermal Method . Communications in Physics, 32(3), 307. https://doi.org/10.15625/0868-3166/16754


Different tungsten oxide nanocrystals were synthesized via facile hydrothermal process – one-step and free of additives - at different reaction temperatures and a highly acidic environment. The phase transformation of samples, followed by the change of morphology and optical properties, was observed as the reaction temperature varied from room temperature to 220oC. The crystal phase transformed from monoclinic WO3∙2H2O to orthorhombic WO3∙H2O, then to monoclinic WO3 as the reaction temperature increased from room temperature to 100 ⁰C, then to 220 ⁰C. Corresponding to the phase transformation, the optical bandgap increased from 2.43 eV to 2.71 eV, and the morphology varied from nanoplate to nanocuboid. The effect of the reaction temperature on the phase transformation was assigned to the dehydration process, which became stronger as the reaction temperature increased. These results gave an insight into the phase transformation and implied a simple method for manipulating the crystal phase and morphology of tungsten oxide nanostructure for various applications.


Download data is not yet available.


Metrics Loading ...


  1. D. Bonardo, N. L. W. Septiani, F. Amri, Estananto, S. Humaidi, Suyatman et al., Review—recent development of WO3 for toxic gas sensors applications, J. Electrochem. Soc. 168 (2021) 107502 DOI: https://doi.org/10.1149/1945-7111/ac0172
  2. G. Mineo, K. Moulaee, G. Neri, S. Mirabella and E. Bruno, H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods, Sens. Actuators B Chem. 348 (2021) 130704. DOI: https://doi.org/10.1016/j.snb.2021.130704
  3. S. Zeb, G. Sun, Y. Nie, H. Xu, Y. Cui and X. Jiang, Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications, Mater. Adv. 2 (2021) 6839. DOI: https://doi.org/10.1039/D1MA00418B
  4. J. Qiu, F. Xu, B. Jin, Y. Sun and J. Wang, Hierarchical wo3 microflowers with tailored oxygen vacancies for boosting photocatalytic dye degradation, New J. Chem. 45 (2021) 21074. DOI: https://doi.org/10.1039/D1NJ03912A
  5. M. G. Peleyeju and E. L. Viljoen, Wo3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water – a review, J. Water Process Eng. 40 (2021) 101930. DOI: https://doi.org/10.1016/j.jwpe.2021.101930
  6. K. Thummavichai, Y. Xia and Y. Zhu, Recent progress in chromogenic research of tungsten oxides towards energy-related applications, Prog. Mater. Sci. 88 (2017) 281. DOI: https://doi.org/10.1016/j.pmatsci.2017.04.003
  7. P. A. Shinde and S. C. Jun, Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage, ChemSusChem 13 (2020) 11; [https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cssc.201902071]. DOI: https://doi.org/10.1002/cssc.201902071
  8. S. Cong, Z. Wang, W. Gong, Z. Chen, W. Lu, J. R. Lombardi et al., Electrochromic semiconductors as colorimetric sers substrates with high reproducibility and renewability, Nat. Commun. 10 (2019) 1. DOI: https://doi.org/10.1038/s41467-019-08656-6
  9. M. Jamali and F. S. Tehrani, Thermally stable wo3 nanostructure synthesized by hydrothermal method without using surfactant, Mater. Sci. Eng. B 270 (2021) 115221. DOI: https://doi.org/10.1016/j.mseb.2021.115221
  10. N. L. Pham, T. L. A. Luu, H. L. Nguyen and C. T. Nguyen, Effects of acidity on the formation and adsorption activity of tungsten oxide nanostructures prepared via the acid precipitation method, Mater. Chem. Phys. 272 (2021) 125014. DOI: https://doi.org/10.1016/j.matchemphys.2021.125014
  11. M. Jamali and F. S. Tehrani, Effect of synthesis route on the structural and morphological properties of WO3 nanostructures, Mater. Sci. Semicond. Process. 107 (2020) 104829. DOI: https://doi.org/10.1016/j.mssp.2019.104829
  12. G. Adilakshmi, A. S. Reddy, P. S. Reddy and C. S. Reddy, Electron beam evaporated nanostructure wo3 films for gas sensor application, Mater. Sci Engineering: B 273 (2021) 115421. DOI: https://doi.org/10.1016/j.mseb.2021.115421
  13. F. Andrei, A. Andrei, R. Birjega, E. N. Sirjita, A. I. Radu, M. Dinescu et al., The influence of the structural and morphological properties of wo3 thin films obtained by pld on the photoelectrochemical water-splitting reaction efficiency, Nanomaterials 11 (2021) 110. DOI: https://doi.org/10.3390/nano11010110
  14. K. Ghosh, A. Roy, S. Tripathi, S. Ghule, A. K. Singh and N. Ravishankar, Insights into nucleation, growth and phase selection of wo 3: morphology control and electrochromic properties, J. Mater. Chem. C 5 (2017) 7307. DOI: https://doi.org/10.1039/C7TC01714F
  15. L. T. L. Anh, P. T. Phong, H. V. Phuong, D. V. Truong, L. X. Truong, P. T. Son et al., Tailoring the structure and morphology of wo3 nanostructures by hydrothermal method, Vietnam J. Sci. Technol. 56 (2018) 127. DOI: https://doi.org/10.15625/2525-2518/56/1A/12513
  16. H. Xu, J. Gao, M. Li, Y. Zhao, M. Zhang, T. Zhao et al., Mesoporous wo3 nanofibers with crystalline framework for high-performance acetone sensing, Front. Chem. 7 (2019) 266. DOI: https://doi.org/10.3389/fchem.2019.00266
  17. A. V. Nikam, B. L. V. Prasad and A. A. Kulkarni, Wet chemical synthesis of metal oxide nanoparticles: a review, CrystEngComm 20 (2018) 5091. DOI: https://doi.org/10.1039/C8CE00487K
  18. S. Adhikari and D. Sarkar, Hydrothermal synthesis and electrochromism of wo 3 nanocuboids, RSC Adv. 4 (2014) 20145. DOI: https://doi.org/10.1039/C4RA00023D
  19. L. Wang, M. Huang, Z. Chen, Z. Yang, M. Qiu, K. Wang et al., ph-controlled assembly of three-dimensional tungsten oxide hierarchical nanostructures for catalytic oxidation of cyclohexene to adipic acid, CrystEngComm 18 (2016) 8688. DOI: https://doi.org/10.1039/C6CE01940D
  20. C. T. Nguyen, N. L. Pham, T. T. Nguyen, D. T. Do and T. L. A. Luu, Effect of reaction time on the phase transformation and photocatalytic activity under solar irradiation of tungsten oxide nanocuboids prepared via facile hydrothermal method, Phase Transitions 94 (2021) 651. DOI: https://doi.org/10.1080/01411594.2021.1954646
  21. F. S. Tehrani, H. Ahmadian and M. Aliannezhadi, Hydrothermal synthesis and characterization of WO3 nanostructures: Effect of reaction time, Mater. Res. Express 7 (2020) 015911. DOI: https://doi.org/10.1088/2053-1591/ab66fc
  22. H. Zhang, Z. Liu, J. Yang, W. Guo, L. Zhu and W. Zheng, Temperature and acidity effects on wo3 nanostructures and gas-sensing properties of wo3 nanoplates, Mater. Res. Bull. 57 (2014) 260. DOI: https://doi.org/10.1016/j.materresbull.2014.06.013
  23. Y. S. Liu, X. L. Xi, Z. R. Nie, L. Y. Zhao and Y. S. Fan, Effect of hydrothermal conditions on crystal structure, morphology and visible-light driven photocatalysis of wo3 nanostructures, Mater. Sci. Forum 993 (2020) 893. DOI: https://doi.org/10.4028/www.scientific.net/MSF.993.893
  24. T. Nagyne-Kov ´ acs, I. E. Luk ´ acs, A. Szab ´ o, K. Hernadi, T. Igricz, K. L ´ aszl ´ o et al., ´ Effect of ph in the hydrothermal preparation of monoclinic tungsten oxide, J. Solid State Chem. 281 (2020) 121044 DOI: https://doi.org/10.1016/j.jssc.2019.121044
  25. K. Yang, X. Li, C. Yu, D. Zeng, F. Chen, K. Zhang et al., Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction, Chinese J. Catal. 40 (2019) 796. DOI: https://doi.org/10.1016/S1872-2067(19)63290-0
  26. M. Kang, J. Liang, F. Wang, X. Chen, Y. Lu and J. Zhang, Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation, Materials Research Bulletin 121 (2020) 110614. DOI: https://doi.org/10.1016/j.materresbull.2019.110614
  27. X. D. Liu, Q. Yang, L. Yuan, D. Qi, X. Wei, X. Zhou et al., Oxygen vacancy-rich WO3 heterophase structure: A trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour, Chem. Eng. J. 425 (2021) 131431. DOI: https://doi.org/10.1016/j.cej.2021.131431
  28. G. Williamson and W. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22. DOI: https://doi.org/10.1016/0001-6160(53)90006-6
  29. C. T. Nguyen, T. P. Pham, T. L. A. Luu, X. S. Nguyen, T. T. Nguyen, H. L. Nguyen et al., Constraint effect caused by graphene on in situ grown gr@ WO3-nanobrick hybrid material, Ceram. Int. 46 (2020) 8711. DOI: https://doi.org/10.1016/j.ceramint.2019.12.108
  30. M. Daniel, B. Desbat, J. Lassegues, B. Gerand and M. Figlarz, Infrared and raman study of WO3 tungsten trioxides and WO3, xh2o tungsten trioxide tydrates, J. Solid State Chem. 67 (1987) 235. DOI: https://doi.org/10.1016/0022-4596(87)90359-8
  31. H. S. Nguyen, T. L. A. Luu, H. T. Bui, T. T. Nguyen, H. L. Nguyen and C. T. Nguyen, Facile synthesis of in situ cnt/WO3·h2o nanoplate composites for adsorption and photocatalytic applications under visible light irradiation, Semicond. Sci. Technol. 36 (2021) 095010. DOI: https://doi.org/10.1088/1361-6641/ac1312
  32. V. T. Nguyen, H. S. Nguyen, V. T. Pham, T. T. M. Nguyen, T. L. A. Luu, H. L. Nguyen et al., Tungsten oxide nanoplates: facile synthesis, controllable oxygen deficiency and photocatalytic activity, Commun. Phys. 30 (2020) 319. DOI: https://doi.org/10.15625/0868-3166/30/4/14425
  33. M. Henry, J. P. Jolivet and J. Livage, Aqueous chemistry of metal cations: hydrolysis, condensation and complexation, Chemistry, Spectroscopy and Applications of Sol-Gel Glasses (1992) 153. DOI: https://doi.org/10.1007/BFb0036968
  34. L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan et al., High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3· 2h2o ultrathin nanosheets, Sci. Rep. 3 (2013) 1. DOI: https://doi.org/10.1038/srep01936
  35. S. Wu, Y. Li, X. Chen, J. Liu, J. Gao and G. Li, Fabrication of WO3· 2h2o nanoplatelet powder by breakdown anodization, Electrochem. Commun. 104 (2019) 106479. DOI: https://doi.org/10.1016/j.elecom.2019.106479
  36. G. Akerlof and H. Oshry, The dielectric constant of water at high temperatures and in equilibrium with its vapor, J. Am. Chem. Soc. 72 (1950) 2844. DOI: https://doi.org/10.1021/ja01163a006
  37. B. B. Owen, R. C. Miller, C. E. Milner and H. L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2, J. Phys. Chem. 65 (1961) 2065. DOI: https://doi.org/10.1021/j100828a035
  38. S. Adhikari, K. S. Chandra, D.-H. Kim, G. Madras and D. Sarkar, Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants, Adv. Powder Technol. 29 (2018) 1591. DOI: https://doi.org/10.1016/j.apt.2018.03.024
  39. G. W. Thomson, The antoine equation for vapor-pressure data., Chem. Rev. 38 (1946) 1. DOI: https://doi.org/10.1021/cr60119a001
  40. Y. Fan, X. Xi, Y. Liu, Z. Nie, Q. Zhang and L. Zhao, Growth mechanism of immobilized WO3 nanostructures in different solvents and their visible-light photocatalytic performance, J. Phys. Chem. Solids 140 (2020) 109380. DOI: https://doi.org/10.1016/j.jpcs.2020.109380
  41. N. H. Son, N. G. Nam, N. T. Anh, T. N. Bach, L. T. L. Anh, N. T. Tung et al., Functionalization-mediated preparation via acid precipitation and photocatalytic activity of in situ ag2wo4@ WO3. h2o nanoplates, ECS J. Solid State Sci. Technol. 10 (2021) 054009. DOI: https://doi.org/10.1149/2162-8777/ac029a
  42. J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang, S. Liu et al., Crystal transformation of 2d tungstic acid h2wo4 to WO3 for enhanced photocatalytic water oxidation, J. Colloid Interface Sci. 514 (2018) 576. DOI: https://doi.org/10.1016/j.jcis.2017.12.066
  43. K. Nishiyama, J. Sasano, S. Yokoyama and M. Izaki, Electrochemical preparation of tungsten oxide hydrate films with controlled bandgap energy, Thin Solid Films 625 (2017) 29. DOI: https://doi.org/10.1016/j.tsf.2017.01.044
  44. Y. Yang, J. Chen, X. Liu, M. Qiu, L. Liu and F. Gao, Oxygen vacancy-mediated wo 3 nanosheets by etched {200} facets and the efficient visible-light photocatalytic oxygen evolution, New J. Chem. 43 (2019) 16391. DOI: https://doi.org/10.1039/C9NJ04286E
  45. W. Zhu, F. Sun, R. Goei and Y. Zhou, Facile fabrication of rgo-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole, Appl. Catal. B Environ. 207 (2017) 93. DOI: https://doi.org/10.1016/j.apcatb.2017.02.012
  46. J. Zhou, S. Lin, Y. Chen, and A. M. Gaskov. Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance, Appl. Surf. Sci. 403 (2017) 274. DOI: https://doi.org/10.1016/j.apsusc.2017.01.209
  47. P. P. Gonzalez-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera et al., ´ Optical band-gap determination of nanostructured WO3 film, Applied Physics Letters 96 (2010) 061909. [https://doi.org/10.1063/1.3313945] DOI: https://doi.org/10.1063/1.3313945