Vol. 30 No. 4 (2020)

Tungsten Oxide Nanoplates: Facile Synthesis, Controllable Oxygen Deficiency and Photocatalytic Activity

Van Thai Nguyen
School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
Hong Son Nguyen
School of Engineering Physics, Hanoi University of Science and Technology
Van Thang Pham
School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
T. Tuyet Mai Nguyen
School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
T. Lan Anh Luu
School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
Huu Lam Nguyen
School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
Duc Chien Nguyen
School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
Cong Tu Nguyen
School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi
Cover Vol 30 No 4 December 2020

Published 20-10-2020


  • tungsten oxide nanoplate,
  • acid precipitation,
  • optical bandgap,
  • photocatalyst,
  • oxygen deficiency

How to Cite

Nguyen, V. T., Nguyen, H. S., Pham, V. T., Nguyen, T. T. M., Luu, T. L. A., Nguyen, H. L., Nguyen, D. C., & Nguyen, C. T. (2020). Tungsten Oxide Nanoplates: Facile Synthesis, Controllable Oxygen Deficiency and Photocatalytic Activity. Communications in Physics, 30(4), 319. https://doi.org/10.15625/0868-3166/30/4/14425


Monoclinic tungsten oxide (WO3) nanoplates were synthesized via a two-step simple process: acid precipitation at room temperature to prepare WO3.H2O nanoplates and annealing at high temperature (400 and 500 oC) in ambient air to obtain WO3 nanoplates. The effect of annealing temperature on physical properties (morphology, oxygen deficiency, crystallinity, optical properties, and photocatalytic activity) of WO3 nanoplates was studied. At both two studied annealing temperatures, all samples have the stable monoclinic structure and visible light-range optical bandgap, but the morphology and photocatalytic activity of the samples vary significantly with annealing temperature. At higher annealing temperature (500 oC), the sample has both nanoplate and nanograin morphologies with round edges, higher crystallinity, larger optical bandgap (2.71 eV), and lower photocatalytic activity. The sample annealed at 400 oC has nanoplate morphology with sharp edges, lower optical bandgap (2.63 eV), and higher photocatalytic which shows a high potential for photocatalytic application under visible light irradiation. The effect of the annealing temperature on the properties of  WO3 nanoplates is assigned to the dehydration, the coalescence, and/or the melting processes at high temperatures. Dehydration causes the formation of oxygen vacancy – oxygen deficiency. The coalescence and/or the melting result in the changing of morphology and the decrease of the oxygen vacancies. These results imply a simple, cost-effective method to prepare highly oxygen-deficient WO3 nanoplates.


Download data is not yet available.


  1. Z. Hai, Z. Wei, C. Xue, H. Xu, F. Verpoort, Nanostructured tungsten oxide thin film devices : from optoelectronics and ionics to iontronics, J. Mater. Chem. C. 7 (2019) 12968–12990. doi:10.1039/c9tc04489b.
  2. P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications, Environ. Sci. Nano. 4 (2017) 539–557. doi:10.1039/C6EN00478D.
  3. X.V. Le, T.L.A. Luu, H.L. Nguyen, C.T. Nguyen, Synergistic enhancement of ammonia gas-sensing properties at low temperature by compositing carbon nanotubes with tungsten oxide nanobricks, Vacuum. 168 (2019) 108861. doi:10.1016/j.vacuum.2019.108861.
  4. M. Parthibavarman, M. Karthik, S. Prabhakaran, Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material, Vacuum. 155 (2018) 224–232. doi:10.1016/j.vacuum.2018.06.021.
  5. C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Stretchable and wearable electrochromic devices, ACS Nano. 8 (2014) 316–322. doi:10.1021/nn404061g.
  6. S. Cong, Z. Wang, W. Gong, Z. Chen, W. Lu, J.R. Lombardi, Z. Zhao, Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability, Nat. Commun. 10 (2019) 678. doi:10.1038/s41467-019-08656-6.
  7. L. Sun, Y. Wang, R. Fazal, Y. Qu, L. Bai, L. Jing, Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes, Sci. Rep. 7 (2017) 1303. doi:10.1038/s41598-017-01300-7.
  8. H. Kalhori, M. Coey, I.A. Sarsari, K. Borisov, B. Porter, G. Atcheson, M. Ranjbar, H. Salamati, P. Stamenov, Oxygen Vacancy in WO3 Film-based FET with Ionic Liquid Gating, Sci. Rep. (2017) 1–10. doi:10.1038/s41598-017-12516-y.
  9. Y. Li, Z. Tang, J. Zhang, Z. Zhang, Enhanced photocatalytic performance of tungsten oxide through tuning exposed facets and introducing oxygen vacancies, J. Alloys Compd. 708 (2017) 358–366. doi:10.1016/j.jallcom.2017.03.046.
  10. Y. Li, C. Wang, H. Zheng, F. Wan, F. Yu, X. Zhang, Y. Liu, Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect, Appl. Surf. Sci. 391 (2017) 654–661. doi:10.1016/j.apsusc.2016.07.042.
  11. A. Al Mohammad, M. Gillet, Phase transformations in WO3 thin films during annealing, Thin Solid Films. (2002). doi:10.1016/S0040-6090(02)00090-1.
  12. S.S. Kalanur, I. Yoo, I. Cho, H. Seo, Effect of oxygen vacancies on the band edge properties of WO3 producing enhanced photocurrents, Electrochim. Acta. 296 (2019) 517–527. doi:10.1016/j.electacta.2018.11.061.
  13. T. Singh, R. Müller, J. Singh, S. Mathur, Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting, Appl. Surf. Sci. (2015). doi:10.1016/j.apsusc.2015.04.126.
  14. I.M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Varga-Josepovits, K. László, A.L. Tóth, P. Baranyai, M. Leskelä, WO3 photocatalysts: Influence of structure and composition, J. Catal. 294 (2012) 119–127. doi:10.1016/j.jcat.2012.07.013.
  15. M. Farhadian, P. Sangpout, G. Hosseinzadeh, Morphology dependent photocatalytic activity of WO3 nanostructures, J. Energy Chem. 24 (2015) 171–177. doi:10.1016/S2095-4956(15)60297-2.
  16. H. Zhang, J. Yang, D. Li, W. Guo, Q. Qin, L. Zhu, W. Zheng, Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities, Appl. Surf. Sci. 305 (2014) 274–280. doi:10.1016/j.apsusc.2014.03.061.
  17. C.W. Lai, WO3 nanoplates film: Formation and photocatalytic oxidation studies, J. Nanomater. (2015). doi:10.1155/2015/563587.
  18. W.-H. Hu, G.-Q. Han, B. Dong, C.-G. Liu, Facile Synthesis of Highly Dispersed WO3⋅H2O and WO3 Nanoplates for Electrocatalytic Hydrogen Evolution, J. Nanomater. 2015 (2015) 346086. doi:10.1155/2015/346086.
  19. J. Ram, R.G. Singh, R. Gupta, V. Kumar, F. Singh, R. Kumar, Effect of annealing on the surface morphology, optical and structural properties of nanodimensional tungsten oxide prepared by coprecipitation technique, J. Electron. Mater. 48 (2019) 1174–1183. doi:10.1007/s11664-018-06846-4.
  20. X.V. Le, V.T. Duong, L. Anh, L. Thi, V.T. Pham, H. Lam, Composition of CNT and WO3 nanoplate : Synthesis and NH3 gas sensing characteristics at low temperature, J. Met. Mater. Miner. 29 (2019) 61–68. doi:10.14456/jmmm.2019.48.
  21. M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response, RSC Adv. 4 (2014) 11012–11022. doi:10.1039/c3ra46726k.
  22. M. Ahmadi, S. Sahoo, R. Younesi, A.P.S. Gaur, R.S. Katiyar, M.J.F. Guinel, WO3 nano-ribbons: Their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3), J. Mater. Sci. 49 (2014) 5899–5909. doi:10.1007/s10853-014-8304-2.
  23. S. Shankara, Y.J. Kalanur, Y. Hwang, O. Chae, J. Shim, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity, J. Mater. Chem. A. 1 (2013) 3479. doi:10.1039/c3ta01175e.
  24. C.T. Nguyen, T.P. Pham, T.L.A. Luu, X.S. Nguyen, T.T. Nguyen, H.L. Nguyen, D.C. Nguyen, Constraint effect caused by graphene on in situ grown Gr@WO -nanobrick hybrid material, Ceram. Int. 46 (2020) 8711–8718. doi:10.1016/j.ceramint.2019.12.108.
  25. G.. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22–31. doi:https://doi.org/10.1016/0001-6160(53)90006-6.
  26. N. Van Thai, N. Tuan Son, L. Thi Lan Anh, P. Van Thang, N. Huu Lam, N. Cong Tu, Facile synthesis and effect of annealing temperature on optical and photocatalytic properties of tungsten oxide nanoplates, in: 11th Natl. Conf. Solid Phys. Mater. Sci. (SPMS 2019), 2019: pp. 632–635.
  27. M. Henry, J.P. Jolivet, J. Livage, Aqueous Chemistry of Metal Cations : Hydrolysis , Condensation and Complexation, (1992).
  28. G.N. Kustova, Y.A. Chesalov, L.M. Plyasova, I.Y. Lin, A.I. Nizovskii, Vibrational spectra of WO3·nH2O and WO3 polymorphs, Vib. Spectrosc. 55 (2011) 235–240. doi:10.1016/j.vibspec.2010.12.004.
  29. D. Gazzoli, M. Valigi, R. Dragone, A. Marucci, G. Mattei, Characterization of the zirconia-supported tungsten oxide system by laser Raman and diffuse reflectance spectroscopies, J. Phys. Chem. B. 101 (1997) 11129–11135. doi:https://doi.org/10.1021/jp971999o.
  30. L.A.T. Luu, T.P. Pham, V.P. Han, V.T. Duong, X.V. Le, T.S. Pham, D.T. Do, V. Dang Duc, H.L. Nguyen, C.T. Nguyen, Tailoring the tructure and morphology of WO3 nanostructures by hydrothermal method, Vietnam J. Sci. Technol. 56 (2018) 127–134. doi:https://doi.org/10.15625/2525-2518/56/1A/12513.
  31. M. Ahmadi, J.-F. Guinel, Synthesis and characterization of tungstite (WO3.H2O) nanoleaves and nanoribbons, Acta Mater. 69 (2014) 203–209. doi:10.1016/j.actamat.2014.01.055.
  32. Y. He, Y. Zhao, Near-infrared laser-induced photothermal coloration in WO3.H2O nanoflakes, J. Phys. Chem. C. (2008). doi:10.1021/jp076898x.
  33. M. Ahmadi, R. Younesi, M.J.F. Guinel, Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure, J. Mater. Res. 29 (2014) 1424–1430. doi:10.1557/jmr.2014.155.
  34. Y.-S. Li, Z. Tang, J. Zhang, Z. Zhang, Defect engineering of air treated-WO3 and its enhanced visible-light-driven photocatalytic performance and electrochemical performance, J. Phys. Chem. C. 120 (2016) 9750–9763. doi:10.1021/acs.jpcc.6b00457.
  35. T. Sanasi, S. Pinitsoontorn, M. Horprathum, P. Eiamchai, C. Chananonnawathorn, W. Hinchreeranun, Development of WO3 nanostructure by acid treatment and annealing, J. Met. Mater. Miner. 27 (2017) 6–11. doi:10.14456/jmmm.2017.xx.
  36. A.H.Y. Hendi, M.F. Al-kuhaili, S.M.A. Durrani, M.M. Faiz, A. Ul-hamid, A. Qurashi, I. Khan, Modulation of the band gap of tungsten oxide thin films through mixing with cadmium telluride towards photovoltaic applications, Mater. Res. Bull. 87 (2017) 148–154. doi:10.1016/j.materresbull.2016.11.032.
  37. K. Baishya, J.S. Ray, P. Dutta, P.P. Das, S.K. Das, Graphene-mediated band gap engineering of ­ WO3 nanoparticle and a relook at Tauc equation for band gap evaluation, Appl. Phys. A. 124 (2018) 1–6. doi:10.1007/s00339-018-2097-0.
  38. K.V. Kumar, Langmuir – Hinshelwood kinetics – A theoretical study, Catal. Commun. 9 (2008) 82–84. doi:10.1016/j.catcom.2007.05.019.
  39. L. Wang, C. Ma, Z. Guo, Y. Lv, W. Chen, Z. Chang, Q. Yuan, H. Ming, J. Wang, In-situ growth of g-C3N4 layer on ZnO nanoparticles with enhanced photocatalytic performances under visible light irradiation, Mater. Lett. 188 (2017) 347–350. doi:10.1016/j.matlet.2016.11.113.
  40. Y. Subramanian, V. Ramasamy, R.K. Gubendiran, G.R.A.J. Srinivasan, Structural , optical , thermal and photocatalytic dye degradation properties of BiFeO3 – WO3 nanocomposites, J. Electron. Mater. 47 (2018) 7212–7223. doi:10.1007/s11664-018-6654-2.
  41. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity, Dalt. Trans. 42 (2013) 8606–8616. doi:10.1039/c3dt00115f.
  42. J. Singh, A. Arora, S. Basu, Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light, J. Alloys Compd. 808 (2019) 151734. doi:10.1016/j.jallcom.2019.151734.
  43. L. Gan, L. Xu, S. Shang, X. Zhou, L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism, Ceram. Int. 42 (2016) 15235–15241. doi:10.1016/j.ceramint.2016.06.160.
  44. M.B. Tahir, G. Nabi, N.R. Khalid, M. Ra, Role of europium on WO3 performance under visible-light for photocatalytic activity, Ceram. Int. 44 (2018) 5705–5709. doi:10.1016/j.ceramint.2017.12.223.