Effect of Cu\(^{2+}\) Dopant on the Formation of Zinc Oxide Microrod Fabricated by a Hydrothermal Method

Sang Xuan Nguyen, Phuoc Sang Le, Thi Lan Anh Luu
Author affiliations

Authors

  • Sang Xuan Nguyen Department of Electronics and Telecommunication,Saigon University https://orcid.org/0000-0003-2048-3137
  • Phuoc Sang Le
  • Thi Lan Anh Luu School of Engineering Physics, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hanoi

DOI:

https://doi.org/10.15625/0868-3166/15921

Keywords:

Cu ion dopant, growth models, morphology, hydrothermal, ZnO microstructures

Abstract

Reconstruction and stabilization of polar oxide surfaces, such as ZnO, contribute a significant role in photocatalysis, chemical sensing, and optoelectronic applications, however their physical chemistry insight is still a puzzle in the surface science. In this work, the  polar surface instability induced the morphological evolution of hydrothermally synthesized micro-rod ZnO doped with various contents of Cu2+ ion (1-10 at.%)  was investigated. The transformation of micro-rod morphology from the high aspect ratio flower-like shape of the pure ZnO to the hexagonal prism-like shape of the doped ZnO was characterized by X-ray diffractometry, scanning electron microscopy and micro Raman spectroscopy. The chemically active Zn-terminated polar surface in doped samples was less positive charge density which was the main reason to cancel the electrostatic instability for the dominant  growing direction. Furthermore, the schematic models of the electron transferring from the conduction band region to the electron trap centre of Cu2+, and the Zn-terminated polar surface reconstruction were proposed for the morphological evolution mechanism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. Scarrozza, G. Pourtois, M. Houssa, M. Caymax, A. Stesmans, M. Meuris, M.M. Heyns, A theoretical study of the initial oxidation of the GaAs(001)-β2(2×4) surface, Applied Physics Letters, 95 (2009) 253504 https://doi.org/10.1063/1.3275737 DOI: https://doi.org/10.1063/1.3275737

C. Noguera, Polar oxide surfaces, Journal of Physics: Condensed Matter, 12 (2000) R367-R410 https://doi.org/10.1088/0953-8984/12/31/201 DOI: https://doi.org/10.1088/0953-8984/12/31/201

D. Mora-Fonz, T. Lazauskas, M.R. Farrow, C.R.A. Catlow, S.M. Woodley, A.A. Sokol, Why Are Polar Surfaces of ZnO Stable?, Chemistry of Materials, 29 (2017) 5306-5320 https://doi.org/10.1021/acs.chemmater.7b01487 DOI: https://doi.org/10.1021/acs.chemmater.7b01487

C.T. Quy, N.X. Thai, N.D. Hoa, D.T. Thanh Le, C.M. Hung, N. Van Duy, N. Van Hieu, C2H5OH and NO2 sensing properties of ZnO nanostructures: correlation between crystal size, defect level and sensing performance, RSC Advances, 8 (2018) 5629-5639 https://doi.org/10.1039/c7ra13702h DOI: https://doi.org/10.1039/C7RA13702H

M. Tonezzer, T.T.L. Dang, N. Bazzanella, V.H. Nguyen, S. Iannotta, Comparative gas-sensing performance of 1D and 2D ZnO nanostructures, Sensors and Actuators B: Chemical, 220 (2015) 1152-1160 https://doi.org/10.1016/j.snb.2015.06.103 DOI: https://doi.org/10.1016/j.snb.2015.06.103

G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping, Applied Surface Science, 390 (2016) 804-815 https://doi.org/10.1016/j.apsusc.2016.08.138 DOI: https://doi.org/10.1016/j.apsusc.2016.08.138

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 (2003) 353-389 https://doi.org/10.1002/adma.200390087 DOI: https://doi.org/10.1002/adma.200390087

B.L. J.Miao, II-VI Semiconductor nanowires: ZnO, Elviser Ltd., 2015. DOI: https://doi.org/10.1016/B978-1-78242-253-2.00001-3

I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Reviews of Modern Physics, 76 (2004) 323-410 DOI: https://doi.org/10.1103/RevModPhys.76.323

S. Choi, J.Y. Do, J.H. Lee, C.S. Ra, S.K. Kim, M. Kang, Optical properties of Cu-incorporated ZnO (Cu x Zn y O) nanoparticles and their photocatalytic hydrogen production performances, Materials Chemistry and Physics, 205 (2018) 206-209 DOI: https://doi.org/10.1016/j.matchemphys.2017.11.022

A. Meng, J. Xing, Z. Li, Q. Li, Cr-doped ZnO nanoparticles: Synthesis, characterization, adsorption property, and recyclability, ACS Appl Mater Interfaces, 7 (2015) 27449-27457 DOI: https://doi.org/10.1021/acsami.5b09366

N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates, Applied Surface Science, 439 (2018) 285-297 DOI: https://doi.org/10.1016/j.apsusc.2017.12.246

A. Sahai, Y. Kumar, V. Agarwal, S.F. Olive-Méndez, N. Goswami, Doping concentration driven morphological evolution of Fe doped ZnO nanostructures, Journal of Applied Physics, 116 (2014) 164315 DOI: https://doi.org/10.1063/1.4900721

A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity, Journal of Alloys and Compounds, 710 (2017) 102-113 DOI: https://doi.org/10.1016/j.jallcom.2017.03.150

M. Babikier, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, Q. Yu, S. Jiao, Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration, Nanoscale Res Lett, 9 (2014) 199 DOI: https://doi.org/10.1186/1556-276X-9-199

O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn, Phys Rev Lett, 90 (2003) 016102 DOI: https://doi.org/10.1103/PhysRevLett.90.016102

J.V. Lauritsen, S. Porsgaard, M.K. Rasmussen, M.C. Jensen, R. Bechstein, K. Meinander, B.S. Clausen, S. Helveg, R. Wahl, G. Kresse, F. Besenbacher, Stabilization principles for polar surfaces of ZnO, ACS Nano, 5 (2011) 5987-5994 DOI: https://doi.org/10.1021/nn2017606

V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. Gil Girol, U. Burghaus, C. Woll, Stabilization of polar ZnO surfaces: validating microscopic models by using CO as a probe molecule, Phys Rev Lett, 90 (2003) 106102 DOI: https://doi.org/10.1103/PhysRevLett.90.106102

Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction, Sci Rep, 6 (2016) 35158 DOI: https://doi.org/10.1038/srep35158

C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, Zinc oxide nanostructures: morphology derivation and evolution, J Phys Chem B, 109 (2005) 19758-19765 DOI: https://doi.org/10.1021/jp0509358

S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Research, 4 (2011) 1013-1098 DOI: https://doi.org/10.1007/s12274-011-0160-7

Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16 (2004) R829-R858 DOI: https://doi.org/10.1088/0953-8984/16/25/R01

N. Goswami, A. Sahai, Structural transformation in nickel doped zinc oxide nanostructures, Materials Research Bulletin, 48 (2013) 346-351 DOI: https://doi.org/10.1016/j.materresbull.2012.10.045

Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIII Oxides as Catalytically Active Species, ACS Catalysis, 6 (2016) 2473-2481 DOI: https://doi.org/10.1021/acscatal.6b00205

M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, W. Kiefer, Low-temperature anomalies of cuprite observed by Raman spectroscopy and x-ray powder diffraction, Journal of Raman Spectroscopy, 28 (1997) 487-493 DOI: https://doi.org/10.1002/(SICI)1097-4555(199707)28:7<487::AID-JRS115>3.0.CO;2-V

M.A. Rizvi, S.A. Akhoon, S.R. Maqsood, G.M. Peerzada, Synergistic effect of perchlorate ions and acetonitrile medium explored for extension in copper redoximetry, Journal of Analytical Chemistry, 70 (2015) 633-638 DOI: https://doi.org/10.1134/S1061934815050093

Z.L. Wang, X.Y. Kong, J.M. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces, Phys Rev Lett, 91 (2003) 185502 DOI: https://doi.org/10.1103/PhysRevLett.91.185502

Downloads

Published

27-03-2022

How to Cite

[1]
S. X. Nguyen, P. S. Le, and T. L. A. Luu, “Effect of Cu\(^{2+}\) Dopant on the Formation of Zinc Oxide Microrod Fabricated by a Hydrothermal Method”, Comm. Phys., vol. 32, no. 2, p. 213, Mar. 2022.

Issue

Section

Papers
Received 08-03-2021
Accepted 04-10-2021
Published 27-03-2022

Most read articles by the same author(s)