Vol. 28 No. 2 (2018)
Papers

A Comparative Study of Optical Bistability in Three-Level EIT Configurations

Doai Van Le
Vinh University, 182 Le Duan Street, Vinh City, Vietnam
Phuong Thi Minh Le
Sai Gon University, 273 An Duong Vuong street, Ho Chi Minh City, Vietnam
Anh Tuan Nguyen
Vinh University, 182 Le Duan Street, Vinh City, Vietnam and Ho Chi Minh City University of food industry, Ho Chi Minh City, Vietnam
Son Hoai Doan
Ha Tinh University, Ha Tinh Province, Vietnam
Khoa Xuan Dinh
Vinh University, 182 Le Duan Street, Vinh City, Vietnam
Sau Ngoc Vu
Vinh University, 182 Le Duan Street, Vinh City, Vietnam
Bang Huy Nguyen
Vinh University, 182 Le Duan Street, Vinh City, Vietnam
Cover image Vol 28 No 2 (2018) Commun. Phys.

Published 17-07-2018

Keywords

  • optical bistability,
  • electromagnetically induced transparency,
  • coherent optical effects

How to Cite

Le, D. V., Le, P. T. M., Nguyen, A. T., Doan, S. H., Dinh, K. X., Vu, S. N., & Nguyen, B. H. (2018). A Comparative Study of Optical Bistability in Three-Level EIT Configurations. Communications in Physics, 28(2), 127. https://doi.org/10.15625/0868-3166/28/2/12541

Abstract

We present a comparative study of optical bistability (OB) in three-level atomic configurations, including $\Lambda $-, cascade-, and V- types under the conditions of electromagnetically induced transparency (EIT). In the steady regime, the input-output intensity relations for the OB in each configuration have been derived in analytical form. The model allows one to construct a clear picture on how the threshold intensity, and other characteristics of the OB are continuously modified with respects to controllable parameters of the laser fields, cooperation parameter, and other physical parameters of atomic system. The results showed that the threshold intensity of OB in \(\Lambda \)-type system is much less than the other ones and the threshold intensity of OB in V-type system is the largest one. The analytical result is convenient to choose excitation configuration for experimental observations and related applications in photonic devices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. E. Abraham and S. D. Smith, “Optical bistability and related devices”, Rep. Prog. Phys., Vol. 45 (1982) 815-885.
  2. L.A. Lugiato, “Theory of Optical Bistability”, in E. Wolf (ed.), Progress in Optics, Vol. 21, North Holland, Amsterdam 1984, pp. 71–216.
  3. H.M. Gibbs, “Optical Bistability: Controlling Light with Light”, Academic Press, New York, 1985.
  4. K.J. Boller, A. Imamoglu, S.E. Harris, “Observation of electromagnetically induced transparency”, Phys. Rev. Lett., 66 (1991) 2593.
  5. L. V. Doai, P. V. Trong, D. X. Khoa, and N. H. Bang: "Electromagnetically induced transparency in five-level cascade scheme of 85Rb atoms: An analytical approach", Optik, 125 (2014) 3666–3669.
  6. D. X. Khoa, P. V. Trong, L. V. Doai, and N. H. Bang: “Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach”, Phys. Script., 91 (2016) 035401.
  7. D. X. Khoa, L. C. Trung, P. V. Thuan, L. V. Doai, and N. H. Bang, “Measurement of dispersive profile of a multi-window EIT spectrum in a Doppler-broadened atomic medium”, J. Opt. Soc. Am. B, 34, No.06 (2017) 1255-1263.
  8. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system”, Phys. Rev. Lett., 87 (2001) 073601.
  9. D. X. Khoa, L. V. Doai, D. H. Son, and N. H. Bang, "Enhancement of self-Kerr nonlinearity via electromagnetically induced transparency in a five-level cascade system: an analytical approach", J. Opt. Soc. Am. B, 31 (2014) 1330-1334.
  10. L. V. Doai, D. X. Khoa, and N. H. Bang, “EIT enhanced self-Kerr nonlinearity in the three-level lambda system under Doppler broadening,” Phys. Scr. 90 (2015) 045502.
  11. S.Q. Gong, S.D. Du, Z.Z. Xu, and S.H. Pan, “Optical bistability via a phase fluctuation effect of the control field”, Phys. Lett. A 222, 237–240 (1996).
  12. Hai Wang, D. J. Goorskey, and Min Xiao, “Bistability and instability of three-level atoms inside an optical cavity”, Phys. Rev A, Vol 65, 011801R (2001).
  13. A. Joshi, W. Yang, M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system”, Phys. Lett. A. 315, 203–207 (2003).
  14. A. Joshi, W. Yang, M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system”, Phys. Rev. A. 68, 015806 (2003).
  15. D. Cheng, C. Liu, S. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system”, Phys. Lett. A. 332, 244–249 (2004).
  16. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91 (2003) 143904.
  17. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system”, Phys. Rev. A 67, 041801(R) (2003).
  18. J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system”, Physica D 228 (2007) 148.
  19. Z. Wang, A-X. Chen, Y. Bai, W.-X. Yang, and R.-K. Lee, “Coherent control of optical bistability in an open Λ-type three-level atomic system”, J. Opt. Soc. Am. B, Vol. 29, No. 10, (2012) 2891-2896.
  20. A. Joshi, M. Xiao, "Controlling steady-state and dynamical properties of atomic optical bistability", World Scientific Publishing, 2012.
  21. Daniel Adam Steck, Rb85 D Line Data: http://steck.us/alkalidata
  22. M. Mack, J. Grimmel, F. Karlewski, L. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes”, Phys. Rev. A 92 (2015) 012517.