Numerical Analysis of the Characteristics of Glass Photonic Crystal Fibers Infiltrated with Alcoholic Liquids

Thuy Thi Nguyen, Trang Thi Gia Chu, Minh Van Le, Vu Quoc Tran, Manh The Nguyen, Khoa Quoc Doan, Khoa Xuan Dinh, Lanh Van Chu, Tran Tran Bao Le
Author affiliations

Authors

  • Thuy Thi Nguyen Hue University of Education, Hue University, 34 Le Loi, Hue City, Vietnam
  • Trang Thi Gia Chu Vinh University
  • Minh Van Le Vinh University
  • Vu Quoc Tran Thu Khoa Nghia High School for The Gifted
  • Manh The Nguyen Hong Duc University, 565 Quang Trung, Thanh Hoa, Vietnam
  • Khoa Quoc Doan Quang Tri Teacher Training College https://orcid.org/0000-0002-4079-4445
  • Khoa Xuan Dinh Vinh University
  • Lanh Van Chu Vinh University
  • Tran Tran Bao Le Hue University of Education, Hue University, 34 Le Loi, Hue City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/30/3/14815

Keywords:

Photonic crystal fiber, effective refractive index, effective mode area, dispersion, confinement loss, Nonlinear optics

Abstract

The characteristics of PCF with various air hole diameters infiltrated with alcoholic liquids such as ethanol, methanol, propanol and butanol are numerically investigated. Based on the numerical results, we have analyzed and compare in detail the characteristics of these fibers including effective refractive index, effective mode area, dispersion and confinement loss for two case: the diameters and lattices constant of air holes are equal 1 µm and 5µm, 1.42µm and 3.26µm, respectively. The PCF infiltrated with ethanol and butanol showed better near zero flattened dispersion property at 1.42µm and 1µm wavelength respectively. With diameters and lattices constant of air holes equal 1.42μm and 3.26μm, the smallest dispersion of PCF filled with ethanol of 5.91075308 (ps.(nm.km)-1) and methanol of 19.3592474 (ps.(nm.km)-1). The highest ZDW of the PCF infiltrated with ethanol and methanol is 1.24604224µm and 1.22405714µm, respectively. Specially, the value of effective refractive index, effective mode area, dispersion and confinement loss decrease in an orderly manner from butanol, propanol, ethanol to methanol and all the alcoholic liquids’s cuvers of dispersion are flat and are very close to each other and near the zero dispersion curve in case the diameters and lattices constant of air holes are equal 1µm and 5µm. The proposed PCF shows a promising prospect in technology applications such as supercontinuum generation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

P. Yeh, A. Yariv, E. Marom, J. Opt. Soc. Am. 68 (1978) 1196. DOI: https://doi.org/10.1364/JOSA.68.001196

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21 (1996) 1547. DOI: https://doi.org/10.1364/OL.21.001547

K. Ahmed, M. Morshed, S. Asaduzzaman, M.F.H. Arif, Optik 131 (2017) 687. DOI: https://doi.org/10.1016/j.ijleo.2016.11.171

K. Saitoh and M. Koshiba, J. Lightwave Technol. 23 (2005) 3580. DOI: https://doi.org/10.1109/JLT.2005.855855

N. A. Mortensen, J. R. Jensen, P. M. W. Skovgaard, and J. Broeng, IEEE Photonics Technology Letters 14 (2002) 1094. DOI: https://doi.org/10.1109/LPT.2002.1021980

T. A. Birks, J. C. Knight, and P. S. J. Russell, Opt. Lett. 22 (1997) 961. DOI: https://doi.org/10.1364/OL.22.000961

L.B. Shaw, V.Q. Nguyen, J.S. Sanghera, I.D. Aggarwal, P.A. Thielen, and F.H. Kung, Advanced Solid-State Photonics 98 (2005) 864.

Tigran Baghdasaryan, Thomas Geernaert, Francis Berghmans, and Hugo Thienpont, Optics Express 19 (2011) 7705. DOI: https://doi.org/10.1364/OE.19.007705

Yashar E. Monfared A.R. Maleki Javan, A.R.Monajati Kashani, Optik 124 (2013) 7049. DOI: https://doi.org/10.1016/j.ijleo.2013.05.168

Klimczak, M., Stepniewski, G., Bookey, H., Szolno, A., Stepien, R., Pysz, D., Kar, A., Waddie, A., Taghizadeh, M.R., Buczynski. R, Optics Letters 38 (2013) 4679. DOI: https://doi.org/10.1364/OL.38.004679

Jacek Pniewski, Tomasz Stefaniuk, Hieu Le Van, Van Cao Long, Lanh Chu Van, Rafał Kasztelanic, Grzegorz Stępniewski, Aleksandr Ramaniuk, Marek Trippenbach, and Ryszard Buczyński, Applied Optics 55 (2016) 5033. DOI: https://doi.org/10.1364/AO.55.005033

Lanh Chu Van, Tomasz Stefaniuk, Rafał Kasztelani, Van Cao Long, Mariusz Klimczakd, Hieu Le Van, Marek Trippenbach, Ryszard Buczynski, Proc. of SPIE 9816 (2015) 98160O-1.

Khoa Dinh Xuan, Lanh Chu Van, Van Cao Long, Quang Ho Dinh, Luu Van Mai, Marek Trippenbach, Ryszard Buczyński, Optical and Quantum Electronics 49 (2017).

Chu Van Lanh, Van Thuy Hoang, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Vu Tran Quoc, Marek Trippenbach, Ryszard Buczyński and Jacek Pniewski, Laser Phys. 29 (2019) 075107. DOI: https://doi.org/10.1088/1555-6611/ab2115

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, Opt. Express 11 (2003) 2589. DOI: https://doi.org/10.1364/OE.11.002589

C. Yu and J. Liou, Opt. Express 17 (2009) 8729. DOI: https://doi.org/10.1364/OE.17.008729

F. Du, Y.-Q. Lu, and S.-T. Wu, Appl. Phys. Lett. 85 (2004) 2181. DOI: https://doi.org/10.1063/1.1796533

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, Opt. Express 15 (2007) 7901. DOI: https://doi.org/10.1364/OE.15.007901

K. M. Gundu, M. Kolesik, J. V. Moloney, K. S. Lee, Opt. Express 14 (2006) 6870. DOI: https://doi.org/10.1364/OE.14.006870

P. D. Rasmussen, J. Lægsgaard, and O. Bang, J. Opt. Soc. Am. B 23 (2006) 2241. DOI: https://doi.org/10.1364/JOSAB.23.002241

J. Park, D. Kang, B. Paulson, T. Nazari, and K. Oh, Opt. Express 22 (2014) 17320. DOI: https://doi.org/10.1364/OE.22.017320

C. Yu, J. Liou, S. Huang, and H. Chang, Opt. Express 16 (2008) 4443. DOI: https://doi.org/10.1364/OE.16.004443

R. Zhang, J. Teipel, and H. Giessen, Opt. Express 14 (2006) 6800. DOI: https://doi.org/10.1364/OE.14.006800

Z. Zhu and T. Brown, Opt. Express 8 (2001) 547. DOI: https://doi.org/10.1364/OE.8.000547

Ho, P.P, Alfano, R.R., Phys. Rev. A 20 (1979) 2170. DOI: https://doi.org/10.1103/PhysRevA.20.2170

Hieu Van Le, Van Long Cao, Hue Thi Nguyen, An Manh Nguyen, Ryszard Buczyński and Rafał Kasztelanic, Laser Phys. 28 (2018) 115106. DOI: https://doi.org/10.1088/1555-6611/aad93a

Lumerical Eigenmode Expansion (EME) Solver, https://www.lumerical.com/tcad products/mode/EME, accessed 29 August 2016.

K. Moutzouris, M. Papamichael, S. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Appl. Phys. B 116 (2014) 617. DOI: https://doi.org/10.1007/s00340-013-5744-3

I. H. Malitson, J. Opt. Soc. Am. 55 (1965) 1205. DOI: https://doi.org/10.1364/JOSA.55.001205

Agrawal, G. Nonlinear FiberOptics, 3rded.; Academic Press: NewYork, (2001).

N. Naddi, E. Mahammed, and K. L. N. Ksihore, IOSR J. Electron. Commun. Eng. 12 (2017) 9. DOI: https://doi.org/10.9790/2834-1203040912

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, Opt. Lett. 26 (2001) 1660. DOI: https://doi.org/10.1364/OL.26.001660

S. Fatema, R. Absar, M. Istiaque Reja, and J. Akhtar, J. Opt. Commun. 410 (2018) 396. DOI: https://doi.org/10.1016/j.optcom.2017.10.026

Jingli Lei, Shanglin Hou, Yanjun Liu, and Xiaoxiao Li, Progress In Electromagnetics Research Symposium Proceedings, Guangzhou, China, Aug. 25-28 (2014).

R. E. Kristiansen, K. P. Hansen, J. Broeng, P. M. W. Skovgaard, M. D. Nielsen, A. Petersson, T. P. Hansen, B. Mangan, C. Jakobsen, and H. R. Simonsen, Proc. Reunion Espanola de Optoelectronica (Elche) 38 (2005) 37.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39 (2003) 25. DOI: https://doi.org/10.1049/el:20031155

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78 (2006) 1135. DOI: https://doi.org/10.1103/RevModPhys.78.1135

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, D. J. Richardson, Opt. Express 14 (2006) 4445. DOI: https://doi.org/10.1364/OE.14.004445

Downloads

Published

22-07-2020

How to Cite

[1]
T. T. Nguyen, “Numerical Analysis of the Characteristics of Glass Photonic Crystal Fibers Infiltrated with Alcoholic Liquids”, Comm. Phys., vol. 30, no. 3, p. 209, Jul. 2020.

Issue

Section

Papers
Received 08-02-2020
Accepted 17-03-2020
Published 22-07-2020

Most read articles by the same author(s)