Vol. 32 No. 1 (2022)
Papers

Highly-sensitive Refractometer Based on a D-shaped Fiber Bragg Grating Integrated into A Loop-mirror Optical Fiber Laser

Binh Pham Thanh
\(^1\)Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam;
\(^2\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Thuy Van Nguyen
Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Van Hoi Pham
\(^1\)Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam;
\(^2\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Huy Bui
\(^1\)Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam;
\(^2\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Thi Hong Cam Hoang
University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Thuy Chi Do
Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam
Anh Tuan Nguyen
Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam

Published 30-09-2021

Keywords

  • D-shaped FBG,
  • optical fiber refractometer,
  • loop-mirror optical fiber laser

How to Cite

Pham Thanh, B., Nguyen, T. V., Pham, V. H., Bui, H., Hoang, T. H. C., Do, T. C., & Nguyen, A. T. (2021). Highly-sensitive Refractometer Based on a D-shaped Fiber Bragg Grating Integrated into A Loop-mirror Optical Fiber Laser. Communications in Physics, 32(1), 11. https://doi.org/10.15625/0868-3166/16014

Abstract

In this paper, we report a new type of refractometer based on a D-shaped fiber Bragg grating (FBG) integrated in a loop-mirror optical fiber laser. This proposed sensor is used in wavelength interrogation method, in which the D-shaped FBG is applied as a refractive index (RI) sensing probe and a mirror to select mode of laser. The D-shaped FBG is prepared by the removal of a portion of the fiber cladding covering the FBG by means of side-polishing technique. The D-shaped FBG sensing probe integrated in a loop-mirror optical fiber laser with saturated pump technique, the characteristics of sensing signals have been improved to obtain stable intensity, narrower bandwidth and higher optical signal-to-noise ratio compare to normal reflection configuration. The limit of detection (LOD) of this sensor can be achieved to 2.95 x 10-4 RIU in the refractive index (RI) range of 1.42-1.44. Accordingly, we believe that the proposed refractometer has a huge potential for applications in biochemical-sensing technique.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. S. Sounderajan, A. C. Udas, and B. Venkataramani, Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy, J. Hazard. Mater. 149 (2007) 238. DOI: https://doi.org/10.1016/j.jhazmat.2007.07.035
  2. N. Zhang, N. Fu, Z. T. Fang, Y. H. Feng and L. Ke, Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves, Food Chem. 124 (2011) 1185. DOI: https://doi.org/10.1016/j.foodchem.2010.07.033
  3. S. Galani-Nikolakaki, N. Kallithrakas-Kontos and A. A. Katsanos, Trace element analysis of Cretan wines and wine products, Sci. Total Environ. 285 (2002) 155. DOI: https://doi.org/10.1016/S0048-9697(01)00912-3
  4. L. J. Santos and M. T. Galceran, The application of gas chromatography to environmental analysis, TrAC Trend. Anal. Chem. 21 (2002) 672. DOI: https://doi.org/10.1016/S0165-9936(02)00813-0
  5. H.Wei, S. M. H. Abtahi and J. Vikesland, Plasmonic colorimetric and SERS sensors for environmental analysis, Environ. Sci.: Nano 2 (2015) 120. DOI: https://doi.org/10.1039/C4EN00211C
  6. M. Li, S. K. Cushing and N. Q. Wu, Plasmon-enhanced optical sensors: a review, Analyst 140 (2015) 386. DOI: https://doi.org/10.1039/C4AN01079E
  7. T. T. Cao, H. B. Nguyen, V. T. Nguyen, T. T. Vu, M. Bayle, M. Paillet, J. L. Sauvajol, B. T. Phan, D. L. Tran, N. M. Phan and V. C. Nguyen, An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl Sens. Actuators B Chem. 260 (2018) 78. DOI: https://doi.org/10.1016/j.snb.2017.12.191
  8. A. V. Markin, N. E. Markina and I. Y. Goryalcheva, Raman spectroscopy based analysis inside photonic-crystal fibers, TrAC Trend. Anal. Chem. 88 (2017) 185. DOI: https://doi.org/10.1016/j.trac.2017.01.003
  9. Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, Y. Geng, Experimental realization of D-shaped photonic crystal fiber SPR sensor, J. Phys. D: Appl. Phys. 50 (2017) 025101. DOI: https://doi.org/10.1088/1361-6463/50/2/025101
  10. T. B. Pham, H. Bui, H. T. Le and V. H. Pham, Synthesis and deposition of Silver nanostructures on the silica microsphere by laser-assisted photochemical method for SERS applications, Sensors 17 (2017) 0007.
  11. X. Wang and O. S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2013–2015), Anal. Chem. 88 (2016) 203. DOI: https://doi.org/10.1021/acs.analchem.5b04298
  12. B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. Sarin Kumar, G. M. Hegde, M. M. Varma and S. Asokan, CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating, Rev. Sci. Instrum. 84 (2013) 065002. DOI: https://doi.org/10.1063/1.4810016
  13. N. Cennamo, D. Massarotti, L. Conte and L. Zeni, Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation, Sensors 11 (2011) 11752. DOI: https://doi.org/10.3390/s111211752
  14. X. D. Wang and O. S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2015–2019), Anal. Chem. 92 (2020) 397. DOI: https://doi.org/10.1021/acs.analchem.9b04708
  15. D. L. Presti, C. Massaroni, C. S. J. Leitao, M. D. F. Domingues, M. Sypabekova, D. Barrera, I. Floris, L. Massari, C. M. Oddo, S. Sales, I. I. Iordachita, D. Tosi and E. Schena, Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review, IEEE Access 8 (2020) 156863. DOI: https://doi.org/10.1109/ACCESS.2020.3019138
  16. R. Zhang, S. Pu and X. Li, Gold-film-thickness dependent SPR refractive index and temperature sensing with hetero-core optical fiber structure, Sensors 19 (2019) 4345. DOI: https://doi.org/10.3390/s19194345
  17. N. Cennamo, L. Zeni, F. Arcadio, E. Catalano and A. Minardo, A novel approach to realizing low-cost plasmonic optical fiber sensors: light-diffusing fibers covered by thin metal films, Fibers 7 (2019) 34. DOI: https://doi.org/10.3390/fib7040034
  18. Y. Tan, Z. Tou, K. Chow and C. Chan, Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications, Opt. Express 23 (2015) 31286. DOI: https://doi.org/10.1364/OE.23.031286
  19. R. Tan, S. Yap, S. Tjin, M. Ibsen, K. Yong and W. Lai, Functionalized fiber end superstructure fiber Bragg grating refractive index sensor for heavy metal ion detection, Sensors 18 (2018) 1821. DOI: https://doi.org/10.3390/s18061821
  20. W. Hu, C. Li, S. Cheng, F. Mumtaz, C. Du and M. Yang, Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation, OSA Continuum 3 (2020) 1058. DOI: https://doi.org/10.1364/OSAC.387019
  21. H. Bui, T. B. Pham, V. A. Nguyen, V. D. Pham, T. C. Do, T. V. Nguyen, T. H. C. Hoang, H. T. Le and V. H. Pham, Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors, Meas. Sci. Technol. 29 (2018) 055105. DOI: https://doi.org/10.1088/1361-6501/aaa8b0
  22. A. K. Paul, Design and analysis of photonic crystal fiber plasmonic refractive Index sensor for condition monitoring of transformer oil, OSA Continuum 3 (2020) 2253. DOI: https://doi.org/10.1364/OSAC.399383
  23. T. Schuster, R. Herschel, N. Neumann and C. G. Schaffer, Miniaturized long-period fiber grating assisted surface plasmon resonance sensor, J. Lightwave Technol. 30 (2012)1003. DOI: https://doi.org/10.1109/JLT.2011.2166756
  24. T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang and T. Liu, Temperature-insensitive refractive index sensor based on tilted moir´e FBG with high resolution, Opt. Express 25 (2017) 14900. DOI: https://doi.org/10.1364/OE.25.014900
  25. Z. W. Ding, T. T. Lang, Y. Wang and C. L. Zhao, Surface plasmon resonance refractive index sensor based on tapered coreless optical fiber structure, J. Lightwave Technol. 35 (2017) 4734. DOI: https://doi.org/10.1109/JLT.2017.2755668
  26. Z. Liu, Y. Wei, Y. Zhang, E. Zhao, J. Yang and L. Yuan, Twin-core fiber SPR sensor Opt. Lett. 40 (2015) 2826. DOI: https://doi.org/10.1364/OL.40.002826
  27. R. X. Tan, D. Ho, C. H. Tse, Y. C. Tan, S. W. Yoo, S. C. Tjin and M. Ibsen, Birefringent Bragg grating in C-shaped optical fiber as a temperature-insensitive refractometer, Sensors 18 (2018) 3285. DOI: https://doi.org/10.3390/s18103285
  28. A. Patnaik, K. Senthilanathan and R. Jha, Graphene-based conducting metal oxide coated d-shaped optical fiber SPR sensor, IEEE Photon-Technol. Lett. 27 (2015) 2437. DOI: https://doi.org/10.1109/LPT.2015.2467189
  29. C. Liao, Q. Wang, L. Xu, S. He, J. Zhao, Z. Li and Y. Wang, D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser, Appl. Opt. 55 (2016) 1525. DOI: https://doi.org/10.1364/AO.55.001525
  30. F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni and N. Cennamo, Refractive index sensing with d-shaped plastic optical fibers for chemical and biochemical applications, Sensors 16 (2016) 2119. DOI: https://doi.org/10.3390/s16122119
  31. L. Jiao, N. Zhong, X. Zhao, S. Ma, X. Fu and D. Dong, Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water, TrAC Trend. Anal. Chem. 127 (2020) 115892. DOI: https://doi.org/10.1016/j.trac.2020.115892
  32. W. Xu, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner and L. Chrostowski, A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide, J. Biophotonics 6 (2013) 821.