Dynamic analysis of two-link flexible manipulator considering the link length ratio and the payload

Duong Xuan Bien, Chu Anh My, Phan Bui Khoi
Author affiliations


  • Duong Xuan Bien Le Quy Don Technical University, Hanoi, Vietnam
  • Chu Anh My Le Quy Don Technical University, Hanoi, Vietnam
  • Phan Bui Khoi Hanoi University of Science and Technology, Vietnam




flexible link, nonlinear dynamic equations, varied payload, varied length of links


Dynamic modeling and analysis of flexible manipulators play an essential role in optimizing mechanical design parameters and control law of real robot systems. In this paper, a nonlinear dynamic model of a manipulator is formulated based on the Finite Element Method. To analyze the dynamic behavior effectively, a numerical simulation scheme is proposed by taking full advantages of MATLAB and SIMULINK toolboxes. In this manner, the effect of varying payload and link length ratio of the manipulator to its elastic displacement is dynamically taken into account. The simulation results show that the payload and length link ratio have significant influences on the elastic displacements of the system. In particular, a proper spectrum of the link length ratio, in which the flexural displacement of the end point of the manipulator is smallest, is demonstrated. To this end, the proposed methodology could be used further to select optimal geometric parameters for the links of new robot designs.


Download data is not yet available.


L. T.Wang and B. Ravani. Dynamic load carrying capacity of mechanical manipulators – part I: Problem formulation. Journal of Dynamic Systems, Measurement, and Control, 110, (1), (1988), pp. 46–52. doi:10.1115/1.3152647.

L. T.Wang and B. Ravani. Dynamic load carrying capacity of mechanical manipulators – part II: Computational procedure and applications. Journal of Dynamic Systems, Measurement, and Control, 110, (1), (1988), pp. 53–61. doi:10.1115/1.3152648.

M. H. Korayem, M. Nazemizadeh, and H. R. Nahooji. Dynamic load carrying capacity of flexible manipulators using finite element method and pontryagins minimum principle. Journal of Optimization in Industrial Engineering, 6, (12), (2013), pp. 17–24.

F. Y. Wang and J. L. Russell. Optimum shape construction of flexible manipulators with tip loads. In Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona, (1992). IEEE, pp. 311–316.

S. S. Ge, T. H. Lee, and G. Zhu. A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model. Journal of Robotic Systems, 14, (3), (1997), pp. 165–178. doi:10.1002/(sici)1097-4563(199703)14:3<165::aid-rob2>3.0.co;2-p.

M. A. Ahmad, Z. Mohamed, and N. Hambali. Dynamic modelling of a two-link flexible manipulator system incorporating payload. In Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications. IEEE, (2008), pp. 96–101. doi:10.1109/iciea.2008.4582487.

M. P. P. Reddy and J. Jacob. Accurate modeling and nonlinear finite element analysis of a flexible-link manipulator. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8, (1), (2014), pp. 165–170.

M. S. Alam. Dynamic modelling of flexible manipulator system using genetic algorithm. Dhaka University Journal of Science, 60, (2), (2012), pp. 239–245. doi:10.3329/dujs.v60i2.11526.

J. Jafari, M. Mirzaie, and M. Zandbaf. Mathematical modeling and nonlinear dynamic analysis of flexible manipulators using finite element method. Universal Journal of Non-linear Mechanics, 1, (2013), pp. 56–61.

K. Ibrahim, A. Aly, and A. A. Ismail. Mode shape analysis of a flexible robot arm. International Journal of Control, Automation and Systems, 1, (2), (2013), pp. 8–15.

G. V. Narayana and R. P. Modeling and control flexible link manipulator using linearization techniques. International Journal of Current Engineering and Technology, 3, (2), (2013), pp. 611–616.

J. F. Peza-Sol´ıs, G. Silva-Navarro, and N. R. Castro-Linares. Trajectory tracking control in a single flexible-link robot using finite differences and sliding modes. Journal of Applied Research and Technology, 13, (1), (2015), pp. 70–78. doi:10.1016/s1665-6423(15)30006-7.

M. H. Korayem, M. Haghpanahi, and H. R. Heidari. Maximum allowable dynamic load of flexible manipulators undergoing large deformation. Mechanical Engineering, 17, (1), (2010), pp. 61–74.

A. A. Ata, W. F. Fares, and M. Y. Saadeh. Dynamic analysis of a two-link flexible manipulator subject to different sets of conditions. Procedia Engineering, 41, (2012), pp. 1253–1260. doi:10.1016/j.proeng.2012.07.308.

M. O. Tokhi, Z. Mohamed, and M. H. Shaheed. Dynamic characterisation of a flexible manipulator system. Robotica, 19, (5), (2001), pp. 571–580. doi:10.1017/s0263574700003209.

T. I. Thinh and N. N. Khoa. Finite element method. Hanoi University of Science and Technology, (2007). (in Vietnamese).






Research Article