Vibrations of cracked functionally graded beams: General solution and application – A review

Nguyen Tien Khiem
Author affiliations

Authors

  • Nguyen Tien Khiem Vietnam Association for Mechanics (VAM), 264 Doi Can street, Ba Dinh district, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/17986

Keywords:

functionally graded materials, vibration shape functions, modal analysis, frequency response, multiple cracked beams

Abstract

This paper presents a unified approach to vibration analysis of functionally graded beams with transverse open-edge cracks based on the so-called vibration shape obtained as a general solution of vibration equations in the frequency domain. The crack is modeled by a pair of translational and rotational springs of stiffness computed from the crack depth in dependence upon functionally graded material parameters. The frequency-dependent vibration shape functions allow one not only to obtain the closed-form solution of both free and forced vibrations for multiple cracked FGM beams but also to develop the well-known methods such as Transfer Matrix Method or Dynamic Stiffness Method for analysis of FGM framed structures. The proposed theoretical developments have been illustrated by their application for modal analysis and frequency response analysis of multi-span and multistep beams.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J. K. Kottke and R. H. Menning. Detection of a transverse crack in a turbine shaft - the Oak Creek experience. A.S.M.E., Paper 81-JPGC-Pwr-19, (1981).

N. Anifantis, N. Aspragathos, and A. D. Dimarogonas. Diagnosis of cracks on concrete frames due to earthquakes by vibration response analysis. In 3rd International Symposium of International Measurements Federation (IMEKO), Moscow, (1983).

P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration, 138, (1990), pp. 381–388. DOI: https://doi.org/10.1016/0022-460X(90)90593-O

O. S. Salawu. Detection of structural damage through changes in frequency: a review. Engineering Structures, 19, (1997), pp. 718–723. DOI: https://doi.org/10.1016/S0141-0296(96)00149-6

N. Papaeconomou and A. Dimarogonas. Vibration of cracked beams. Computational Mechanics, 5, (2-3), (1989), pp. 88–94. DOI: https://doi.org/10.1007/BF01046477

A. D. Dimarogonas. Vibration of cracked structures: A state of the art review. Engineering Fracture Mechanics, 55, (1996), pp. 831–857. DOI: https://doi.org/10.1016/0013-7944(94)00175-8

P. Gudmundson. Eigenfrequency changes of structures due to cracks, notches or other geometrical changes. Journal of the Mechanics and Physics of Solids, 30, (1982), pp. 339–353. DOI: https://doi.org/10.1016/0022-5096(82)90004-7

S. Christides and A. D. S. Barr. One-dimensional theory of cracked Bernoulli-Euler beams. International Journal of Mechanical Sciences, 26, (1984), pp. 639–648. DOI: https://doi.org/10.1016/0020-7403(84)90017-1

M.-H. H. Shen and C. Pierre. Natural modes of Bernoulli-Euler beams with symmetric cracks. Journal of Sound and Vibration, 138, (1990), pp. 115–134. DOI: https://doi.org/10.1016/0022-460X(90)90707-7

M.-H. H. Shen and C. Pierre. Free vibrations of beams with a single-edge crack. Journal of Sound and Vibration, 170, (1994), pp. 237–259. DOI: https://doi.org/10.1006/jsvi.1994.1058

G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, (1957), pp. 361–364. DOI: https://doi.org/10.1115/1.4011547

R. A. Westmann and W. H. Yang. Stress analysis of cracked rectangular beams. Journal of Applied Mechanics, 34, (1967), pp. 693–701. DOI: https://doi.org/10.1115/1.3607763

A. D. Dimarogonas and Paipetis. Analytical methods in rotor dynamics. London: Elsevier Applied Science, (1983).

G. Gounaris and A. Dimarogonas. A finite element of a cracked prismatic beam for structural analysis. Computers & Structures, 28, (1988), pp. 309–313. DOI: https://doi.org/10.1016/0045-7949(88)90070-3

R. D. Adams, P. Cawley, C. J. Pye, and B. J. Stone. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 20, (1978), pp. 93–100. DOI: https://doi.org/10.1243/JMES_JOUR_1978_020_016_02

W. M. Ostachowicz and M. Krawczuk. Analysis of the effect of cracks on the natural frequencies of a cantilever beam. Journal of Sound and Vibration, 150, (1991), pp. 191–201. DOI: https://doi.org/10.1016/0022-460X(91)90615-Q

T. G. Chondros, A. D. Dimarogonas, and J. Yao. A continuous cracked beam theory. Journal of Sound and Vibration, 215, (1998), pp. 17–34. DOI: https://doi.org/10.1006/jsvi.1998.1640

T. G. Chondros, A. D. Dimarogonas, and J. Yao. Longitudinal vibration of a continuous cracked bar. Engineering Fracture Mechanics, 61, (1998), pp. 593–606. DOI: https://doi.org/10.1016/S0013-7944(98)00071-X

B. Biondi and S. Caddemi. Closed form solutions of Euler–Bernoulli beams with singularities. International Journal of Solids and Structures, 42, (2005), pp. 3027–3044. DOI: https://doi.org/10.1016/j.ijsolstr.2004.09.048

S. Caddemi and I. Cali` o. Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. Journal of Sound and Vibration, 327, (2009), pp. 473–489. DOI: https://doi.org/10.1016/j.jsv.2009.07.008

A. Morassi. Crack-induced changes in eigenparameters of beam structures. Journal of Engineering Mechanics, 119, (1993), pp. 1798–1803. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1993)119:9(1798)

Y. Narkis. Identification of crack location in vibrating simply supported beams. Journal of Sound and Vibration, 172, (1994), pp. 549–558. DOI: https://doi.org/10.1006/jsvi.1994.1195

E. I. Shifrin and R. Ruotolo. Natural frequencies of a beam with an arbitrary number of cracks. Journal of Sound and Vibration, 222, (1999), pp. 409–423. DOI: https://doi.org/10.1006/jsvi.1998.2083

N. T. Khiem and T. V. Lien. A simplified method for natural frequency analysis of multiple cracked beam. Journal of Sound and Vibration, 245, (2001), pp. 737–751. DOI: https://doi.org/10.1006/jsvi.2001.3585

Q. S. Li. Free vibration analysis of non-uniform beams with an arbitrary number of cracks and concentrated masses. Journal of Sound and Vibration, 252, (2002), pp. 509–525. DOI: https://doi.org/10.1006/jsvi.2001.4034

N. T. Khiem and T. T. Hai. A closed-form solution for free vibration of beams with arbitrary number of cracks. In Proceedings of the Scientific Conference dedicated to 35th Anniversary of Vietnam Academy of Science and Technology, Hanoi, Vol. 1, (2010), pp. 30–42.

S. P. Lele and S. K. Maiti. Modeling of transverse vibration of short beams for crack detection and measurement of crack extension. Journal of Sound and Vibration, 257, (2002), pp. 559–583. DOI: https://doi.org/10.1006/jsvi.2002.5059

M. Krawczuk, M. Palacz, and W. Ostachowicz. The dynamic analysis of a cracked Timoshenko beam by the spectral element method. Journal of Sound and Vibration, 264, (2003), pp. 1139–1153. DOI: https://doi.org/10.1016/S0022-460X(02)01387-1

Q. S. Li. Vibratory characteristics of Timoshenko beams with arbitrary number of cracks. Journal of Engineering Mechanics, 129, (2003), pp. 1355–1359. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2003)129:11(1355)

J. A. Loya, L. Rubio, and J. Fern´andez-S´aez. Natural frequencies for bending vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 290, (2006), pp. 640–653. DOI: https://doi.org/10.1016/j.jsv.2005.04.005

N. T. Khiem and D. T. Hung. A closed-form solution for free vibration of multiple cracked Timoshenko beam and application. Vietnam Journal of Mechanics, 39, (2017), pp. 315–328. DOI: https://doi.org/10.15625/0866-7136/9641

F. Erdogan and B. H. Wu. The surface crack problem for a plate with functionally graded properties. Journal of Applied Mechanics, 64, (1997), pp. 449–456. DOI: https://doi.org/10.1115/1.2788914

X.-F. Li. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. Journal of Sound and Vibration, 318, (2008), pp. 1210–1229. DOI: https://doi.org/10.1016/j.jsv.2008.04.056

J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83, (2008), pp. 48–60. DOI: https://doi.org/10.1016/j.compstruct.2007.03.006

S. Kitipornchai, L. L. Ke, J. Yang, and Y. Xiang. Nonlinear vibration of edge cracked functionally graded Timoshenko beams. Journal of Sound and Vibration, 324, (2009), pp. 962–982. DOI: https://doi.org/10.1016/j.jsv.2009.02.023

S. A. Sina, H. M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30, (2009), pp. 741–747. DOI: https://doi.org/10.1016/j.matdes.2008.05.015

Z. Yu and F. Chu. Identification of crack in functionally graded material beams using the p-version of finite element method. Journal of Sound and Vibration, 325, (2009), pp. 69–84. DOI: https://doi.org/10.1016/j.jsv.2009.03.010

T. Yan, S. Kitipornchai, J. Yang, and X. Q. He. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93, (2011), pp. 2992–3001. DOI: https://doi.org/10.1016/j.compstruct.2011.05.003

K. Aydin. Free vibration of functionally graded beams with arbitrary number of surface cracks. European Journal of Mechanics - A/Solids, 42, (2013), pp. 112–124. DOI: https://doi.org/10.1016/j.euromechsol.2013.05.002

S. D. Akbas. Free vibration characteristics of edge cracked functionally graded beams by using finite element method. International Journal of Engineering Trends and Technology, 4, (10), (2013), pp. 4590–4597.

M. A. Eltaher, A. E. Alshorbagy, and F. F. Mahmoud. Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Composite Structures, 99, (2013), pp. 193–201. DOI: https://doi.org/10.1016/j.compstruct.2012.11.039

H. Su and J. R. Banerjee. Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Computers & Structures, 147, (2015), pp. 107–116. DOI: https://doi.org/10.1016/j.compstruc.2014.10.001

D. Gayen, R. Tiwari, and D. Chakraborty. Static and dynamic analyses of cracked functionally graded structural components: A review. Composites Part B: Engineering, 173, (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.106982

G. P. Sinha and B. Kumar. Review on vibration analysis of functionally graded material structural components with cracks. Journal of Vibration Engineering & Technologies, 9, (2020), pp. 23–49. DOI: https://doi.org/10.1007/s42417-020-00208-3

N. T. Khiem, N. N. Huyen, and N. T. Long. Vibration of cracked Timoshenko beam made of functionally graded material. In Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9. Springer International Publishing, (2017), pp. 133–143. DOI: https://doi.org/10.1007/978-3-319-54735-0_15

T. V. Lien, N. T. Duc, and N. T. Khiem. Free vibration analysis of multiple cracked functionally graded Timoshenko beams. Latin American Journal of Solids and Structures, 14, (2017), pp. 1752–1766. DOI: https://doi.org/10.1590/1679-78253693

T. V. Lien, N. T. Duc, and N. T. Khiem. Free and forced vibration analysis of multiple cracked FGM multi span continuous beams using dynamic stiffness method. Latin American Journal of Solids and Structures, 16, (2), (2019). DOI: https://doi.org/10.1590/1679-78255242

N. T. Khiem, T. T. Hai, and L. Q. Huong. Effect of piezoelectric patch on natural frequencies of Timoshenko beam made of functionally graded material. Materials Research Express, 7, (2020). DOI: https://doi.org/10.1088/2053-1591/ab8df5

N. T. Khiem, T. T. Hai, and L. Q. Huong. Modal analysis of cracked FGM beam with piezoelectric layer. Mechanics Based Design of Structures and Machines, (2021), pp. 1–21. DOI: https://doi.org/10.1080/15397734.2021.1992775

N. T. Khiem, D. T. Huan, and T. T. Hieu. Vibration of cracked FGM beam with piezoelectric layer under moving load. Journal of Vibration Engineering & Technologies, (2022). DOI: https://doi.org/10.1007/s42417-022-00607-8

Downloads

Published

30-12-2022

How to Cite

[1]
N. T. Khiem, Vibrations of cracked functionally graded beams: General solution and application – A review, Vietnam J. Mech. 44 (2022) 317–347. DOI: https://doi.org/10.15625/0866-7136/17986.

Issue

Section

Review Article

Categories

Most read articles by the same author(s)

1 2 3 > >>