Buckling analysis of laminated composite thin-walled I-beam under mechanical and thermal loads

Author affiliations

Authors

  • Xuan-Bach Bui Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc City, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-7933-2985
  • Anh-Cao Nguyen Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc City, Ho Chi Minh City, Vietnam https://orcid.org/0000-0001-5100-603X
  • Ngoc-Duong Nguyen Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc City, Ho Chi Minh City, Vietnam https://orcid.org/0000-0003-0981-5970
  • Tien-Tho Do Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc City, Ho Chi Minh City, Vietnam
  • Trung-Kien Nguyen CIRTech Institute, HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-1215-9348

DOI:

https://doi.org/10.15625/0866-7136/17956

Keywords:

thin-walled beam, thermal buckling, buckling analysis, series solution

Abstract

Despite the extensive use of thin-walled structures, the studies on their behaviours when exposed to extreme thermal environment are relatively scarce. Therefore, this paper aims to present the buckling analysis of thin-walled composite I-beams under thermo-mechanical loads. The thermal effects are investigated for the case of studied beams undergoing a uniform temperature rise through their thickness. The theory is based on the first-order shear deformation thin-walled beam theory with linear variation of displacements in the wall thickness. The governing equations of motion are derived from Hamilton's principle and are solved by series-type solutions with hybrid shape functions. Numerical results are presented to investigate the effects of fibre angle, material distribution, span-to-height's ratio and shear deformation on the critical buckling load and temperature rise. These results for several cases are verified with available references to demonstrate the present beam model’s accuracy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

O. A. Bauchau and J. I. Craig. Structural analysis: with applications to aerospace structures. Springer Netherlands, (2009).

T. H. G. Megson. Aircraft structures for engineering students. United Kingdom: Butterworth-Heinemann, seventh edition, (2021).

S. Eken. Free vibration analysis of composite aircraft wings modeled as thin-walled beams with NACA airfoil sections. Thin-Walled Structures, 139, (2019), pp. 362–371. DOI: https://doi.org/10.1016/j.tws.2019.01.042

Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez. A review of optimization techniques used in the design of fibre composite structures for civil engineering applications. Materials & Design, 33, (2012), pp. 534–544. DOI: https://doi.org/10.1016/j.matdes.2011.04.061

C. Mittelstedt. Buckling and post-buckling of thin-walled composite laminated beams—a review of engineering analysis methods. Applied Mechanics Reviews, 72, (2020). DOI: https://doi.org/10.1115/1.4045680

L. Librescu and O. Song. Thin-walled composite beams. Springer Netherlands, (2006). DOI: https://doi.org/10.1007/1-4020-4203-5

N. R. Bauld and T. Lih-Shyng. A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections. International Journal of Solids and Structures, 20, (3), (1984), pp. 277–297. DOI: https://doi.org/10.1016/0020-7683(84)90039-8

M. D. Pandey, M. Z. Kabir, and A. N. Sherbourne. Flexural-torsional stability of thin-walled composite I-section beams. Composites Engineering, 5, (1995), pp. 321–342. DOI: https://doi.org/10.1016/0961-9526(94)00101-E

J. Lee and S.-E. Kim. Free vibration of thin-walled composite beams with I-shaped cross-sections. Composite Structures, 55, (2002), pp. 205–215. DOI: https://doi.org/10.1016/S0263-8223(01)00150-7

J. Lee and S.-E. Kim. Flexural–torsional buckling of thin-walled I-section composites. Computers & Structures, 79, (2001), pp. 987–995. DOI: https://doi.org/10.1016/S0045-7949(00)00195-4

A. G. Razaqpur and H. Li. Thin-walled multicell box-girder finite element. Journal of Structural Engineering, 117, (1991), pp. 2953–2971. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(2953)

R. Pavazza, A. Matokovic, and M. Vukasovic. A theory of torsion of thin-walled beams of arbitrary open sections with influence of shear. Mechanics Based Design of Structures and Machines, 50, (2020), pp. 206–241. DOI: https://doi.org/10.1080/15397734.2020.1714449

S. Y. Back and K. M. Will. Shear-flexible thin-walled element for composite I-beams. Engineering Structures, 30, (2008), pp. 1447–1458. DOI: https://doi.org/10.1016/j.engstruct.2007.08.002

S. S. Maddur and S. K. Chaturvedi. Laminated composite open profile sections: non-uniform torsion of I-sections. Composite Structures, 50, (2000), pp. 159–169. DOI: https://doi.org/10.1016/S0263-8223(00)00093-3

S. S. Maddur and S. K. Chaturvedi. Laminated composite open profile sections: first order shear deformation theory. Composite Structures, 45, (1999), pp. 105–114. DOI: https://doi.org/10.1016/S0263-8223(99)00005-7

J. Lee. Flexural analysis of thin-walled composite beams using sheardeformable beam theory. Composite Structures, 70, (2005), pp. 212–222. DOI: https://doi.org/10.1016/j.compstruct.2004.08.023

Z. Qin and L. Librescu. On a shear-deformable theory of anisotropic thin-walled beams: further contribution and validations. Composite Structures, 56, (2002), pp. 345–358. DOI: https://doi.org/10.1016/S0263-8223(02)00019-3

T. P. Vo and J. Lee. Flexural–torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory. International Journal of Mechanical Sciences, 51, (2009), pp. 631–641. DOI: https://doi.org/10.1016/j.ijmecsci.2009.05.001

J. Lee. Center of gravity and shear center of thin-walled open-section composite beams. Composite Structures, 52, (2001), pp. 255–260. DOI: https://doi.org/10.1016/S0263-8223(00)00177-X

S. N. Jung and J.-Y. Lee. Closed-form analysis of thin-walled composite I-beams considering non-classical effects. Composite Structures, 60, (2003), pp. 9–17. DOI: https://doi.org/10.1016/S0263-8223(02)00318-5

N.-I. Kim and D. K. Shin. Coupled deflection analysis of thin-walled Timoshenko laminated composite beams. Computational Mechanics, 43, (2008), pp. 493–514. DOI: https://doi.org/10.1007/s00466-008-0324-9

L.Wu and M. Mohareb. Finite element formulation for shear deformable thin-walled beams. Canadian Journal of Civil Engineering, 38, (2011), pp. 383–392. DOI: https://doi.org/10.1139/l11-007

A. Prokic. On fivefold coupled vibrations of Timoshenko thin-walled beams. Engineering Structures, 28, (2006), pp. 54–62. DOI: https://doi.org/10.1016/j.engstruct.2005.07.002

S. J. Kim, K. W. Yoon, and S. N. Jung. Shear correction factors for thin-walled composite boxbeam considering nonclassical behaviors. Journal of Composite Materials, 30, (1996), pp. 1132–1149. DOI: https://doi.org/10.1177/002199839603001004

X.-B. Bui, T.-K. Nguyen, N.-D. Nguyen, and T. P. Vo. A general higher-order shear deformation theory for buckling and free vibration analysis of laminated thin-walled composite I-beams. Composite Structures, 295, (2022). DOI: https://doi.org/10.1016/j.compstruct.2022.115775

R. F. Vieira, F. B. E. Virtuoso, and E. B. R. Pereira. A higher order thin-walled beam model including warping and shear modes. International Journal of Mechanical Sciences, 66, (2013), pp. 67–82. DOI: https://doi.org/10.1016/j.ijmecsci.2012.10.009

N.-L. Nguyen, G.-W. Jang, S. Choi, J. Kim, and Y. Y. Kim. Analysis of thin-walled beam-shell structures for concept modeling based on higher-order beam theory. Computers & Structures, 195, (2018), pp. 16–33. DOI: https://doi.org/10.1016/j.compstruc.2017.09.009

L. C. Trinh, T. P. Vo, H.-T. Thai, and T.-K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering, 100, (2016), pp. 152–163. DOI: https://doi.org/10.1016/j.compositesb.2016.06.067

T.-K. Nguyen, B.-D. Nguyen, T. P. Vo, and H.-T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 176, (2017), pp. 1050–1060. DOI: https://doi.org/10.1016/j.compstruct.2017.06.036

X. Li, Y. H. Li, and Y. Qin. Free vibration characteristics of a spinning composite thin-walled beam under hygrothermal environment. International Journal of Mechanical Sciences, 119, (2016), pp. 253–265. DOI: https://doi.org/10.1016/j.ijmecsci.2016.10.028

Y. Sun, S.-R. Li, and R. C. Batra. Thermal buckling and post-buckling of FGM timoshenko beams on nonlinear elastic foundation. Journal of Thermal Stresses, 39, (2016), pp. 11–26. DOI: https://doi.org/10.1080/01495739.2015.1120627

S. K. Simonetti, G. Turkalj, and D. Lanc. Thermal buckling analysis of thin-walled closed section FG beam-type structures. Thin-Walled Structures, 181, (2022). DOI: https://doi.org/10.1016/j.tws.2022.110075

D. Pantousa. Numerical study on thermal buckling of empty thin-walled steel tanks under multiple pool-fire scenarios. Thin-Walled Structures, 131, (2018), pp. 577–594. DOI: https://doi.org/10.1016/j.tws.2018.07.025

N.-D. Nguyen, T.-K. Nguyen, T. P. Vo, T.-N. Nguyen, and S. Lee. Vibration and buckling behaviours of thin-walled composite and functionally graded sandwich I-beams. Composites Part B: Engineering, 166, (2019), pp. 414–427. DOI: https://doi.org/10.1016/j.compositesb.2019.02.033

N.-I. Kim, D. K. Shin, and M.-Y. Kim. Flexural–torsional buckling loads for spatially coupled stability analysis of thin-walled composite columns. Advances in Engineering Software, 39, (2008), pp. 949–961. DOI: https://doi.org/10.1016/j.advengsoft.2008.03.001

Downloads

Published

20-03-2023

How to Cite

[1]
X.-B. Bui, A.-C. Nguyen, N.-D. Nguyen, T.-T. Do and T.-K. Nguyen, Buckling analysis of laminated composite thin-walled I-beam under mechanical and thermal loads, Vietnam J. Mech. 45 (2023) 75–90. DOI: https://doi.org/10.15625/0866-7136/17956.

Issue

Section

Research Article

Categories