Effects of transverse normal strain on bending of laminated composite beams

Trung-Kien Nguyen, Ngoc-Duong Nguyen
Author affiliations


  • Trung-Kien Nguyen Ho Chi Minh City University of Technology and Education, Vietnam
  • Ngoc-Duong Nguyen Ho Chi Minh City University of Technology and Education, Vietnam




transverse normal strain, Ritz method, static, laminated composite beams


Effect of transverse normal strain on bending of laminated composite beams is proposed in this paper. A Quasi-3D beam theory which accounts for a higher-order variation of both axial and transverse displacements is used to consider the effects of both transverse shear and normal strains on bending behaviours of laminated composite beams. Ritz method is used to solve characteristic equations in which trigonometric shape functions are proposed. Numerical results for different boundary conditions are presented to compare with those from earlier works, and to investigate the effects of thickness stretching, fibre angles, span-to-height ratio and material anisotropy on the displacement and stresses of laminated composite beams.


Download data is not yet available.


Metrics Loading ...


R. P. Shimpi and Y. M. Ghugal. A new layerwise trigonometric shear deformation theory for two-layered cross-ply beams. CRC Press, 61, (9), (2001), pp. 1271–1283. https://doi.org/10.1016/s0266-3538(01)00024-0 https://doi.org/10.1016/s0266-3538(01)00024-0">

R. P. Shimpi and Y. M. Ghugal. A layerwise trigonometric shear deformation theory for two layered cross-ply laminated beams. Journal of Reinforced Plastics and Composites, 18, (16), (1999), pp. 1516–1543. https://doi.org/10.1177/073168449901801605 https://doi.org/10.1177/073168449901801605">

A. M. Zenkour. Transverse shear and normal deformation theory for bending analysis of laminated and sandwich elastic beams. Mechanics of Composite Materials and Structures, 6, (3), (1999), pp. 267–283. https://doi.org/10.1080/107594199305566 https://doi.org/10.1080/107594199305566">

K. P. Soldatos and P. Watson. A general theory for the accurate stress analysis of homogeneous and laminated composite beams. International Journal of Solids and Structures, 34, (22), (1997), pp. 2857–2885. https://doi.org/10.1016/s0020-7683(96)00170-9 https://doi.org/10.1016/s0020-7683(96)00170-9">

A. A. Khdeir and J. N. Reddy. An exact solution for the bending of thin and thick cross-ply laminated beams. Composite Structures, 37, (2), (1997), pp. 195–203. https://doi.org/10.1016/s0263-8223(97)80012-8 https://doi.org/10.1016/s0263-8223(97)80012-8">

J. L. Mantari and F. G. Canales. Finite element formulation of laminated beams with capability to model the thickness expansion. Composites Part B: Engineering, 101, (2016), pp. 107–115. https://doi.org/10.1016/j.compositesb.2016.06.080 https://doi.org/10.1016/j.compositesb.2016.06.080">

J. L. Mantari and F. G. Canales. A unified quasi-3D HSDT for the bending analysis of laminated beams. Aerospace Science and Technology, 54, (2016), pp. 267–275. https://doi.org/10.1016/j.ast.2016.04.026 https://doi.org/10.1016/j.ast.2016.04.026">

U. Icardi. A three-dimensional zig-zag theory for analysis of thick laminated beams. Composite Structures, 52, (1), (2001), pp. 123–135. https://doi.org/10.1016/s0263-8223(00)00189-6 https://doi.org/10.1016/s0263-8223(00)00189-6">

U. Icardi. Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations. Composites Part B: Engineering, 32, (4), (2001), pp. 343–354. https://doi.org/10.1016/s1359-8368(01)00016-6 https://doi.org/10.1016/s1359-8368(01)00016-6">

U. Icardi. Applications of zig-zag theories to sandwich beams. Mechanics of Advanced Materials and Structures, 10, (1), (2003), pp. 77–97. https://doi.org/10.1080/15376490306737 https://doi.org/10.1080/15376490306737">

E. Carrera and G. Giunta. Refined beam theories based on a unified formulation. International Journal of Applied Mechanics, 2, (01), (2010), pp. 117–143. https://doi.org/10.1142/s1758825110000500 https://doi.org/10.1142/s1758825110000500">

A. Catapano, G. Giunta, S. Belouettar, and E. Carrera. Static analysis of laminated beams via a unified formulation. Composite Structures, 94, (1), (2011), pp. 75–83. https://doi.org/10.1016/j.compstruct.2011.07.015 https://doi.org/10.1016/j.compstruct.2011.07.015">

A. S. Sayyad and Y. M. Ghugal. Bending, buckling and free vibration of laminated composite and sandwich beams: Acritical review of literature. Composite Structures, 171, (2017), pp. 486–504. https://doi.org/10.1016/j.compstruct.2017.03.053 https://doi.org/10.1016/j.compstruct.2017.03.053">

J. Bernoulli. Curvatura laminae elasticae. Acta Eruditorum, 1694, (13), (1964), pp. 262–276.

S. P. Timoshenko. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41, (245), (1921), pp. 744–746.

S. P. Timoshenko. On the transverse vibrations of bars of uniform cross-section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43, (253), (1922), pp. 125–131. https://doi.org/10.1080/14786442208633855 https://doi.org/10.1080/14786442208633855">

K. Chandrashekhara, K. Krishnamurthy, and S. Roy. Free vibration of composite beams including rotary inertia and shear deformation. Composite Structures, 14, (4), (1990), pp. 269–279. https://doi.org/10.1016/0263-8223(90)90010-c https://doi.org/10.1016/0263-8223(90)90010-c">

N. T. Khiem and D. T. Hung. A closed-form solution for free vibration of multiple cracked Timoshenko beam and application. Vietnam Journal of Mechanics, 39, (4), (2017), pp. 315–328. https://doi.org/10.15625/0866-7136/9641 https://doi.org/10.15625/0866-7136/9641">

M. Levinson. A new rectangular beam theory. Journal of Sound and Vibration, 74, (1), (1981), pp. 81–87. https://doi.org/10.1016/0022-460x(81)90493-4 https://doi.org/10.1016/0022-460x(81)90493-4">

A. V. Krishna Murty. Toward a consistent beam theory. AIAA Journal, 22, (6), (1984), pp. 811–816. https://doi.org/10.2514/3.8685 https://doi.org/10.2514/3.8685">

J. N. Reddy. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51, (4), (1984), pp. 745–752. https://doi.org/10.1115/1.3167719 https://doi.org/10.1115/1.3167719">

Y. M. Ghugal and R. P. Shimpi. A trigonometric shear deformation theory for flexure and free vibration of isotropic thick beams. In Structural Engineering Convention, SEC-2000, IIT Bombay, India, (2000), pp. 255–263.

A. S. Sayyad and Y. M. Ghugal. A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates. International Journal of Applied Mechanics, 9, (01), (2017). https://doi.org/10.1142/s1758825117500077 https://doi.org/10.1142/s1758825117500077">

T. T. Thom and N. D. Kien. Free vibration analysis of 2-D FGM beams in thermal environment based on a new third-order shear deformation theory. Vietnam Journal of Mechanics, 40, (2), (2018), pp. 121–140. https://doi.org/10.15625/0866-7136/10503 https://doi.org/10.15625/0866-7136/10503">

H. Matsunaga. Vibration and buckling of multilayered composite beams according to higher order deformation theories. Journal of Sound and Vibration, 246, (1), (2001), pp. 47–62. https://doi.org/10.1006/jsvi.2000.3627 https://doi.org/10.1006/jsvi.2000.3627">

W. Q. Chen, C. F. Lv, and Z. G. Bian. Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Composite Structures, 63, (3-4), (2004), pp. 417–425. https://doi.org/10.1016/s0263-8223(03)00190-9 https://doi.org/10.1016/s0263-8223(03)00190-9">

J. Li, Q. Huo, X. Li, X. Kong, and W. Wu. Vibration analyses of laminated composite beams using refined higher-order shear deformation theory. International Journal of Mechanics and Materials in Design, 10, (1), (2014), pp. 43–52.

A. S. Ghugal and S. Y. M. Effect of transverse shear and transverse normal strain on bending analysis of cross-ply laminated beams. International Journal of Applied Mathematics and Mechanics, 7, (12), (2011), pp. 85–118.

K. Chandrashekhara and K. M. Bangera. Free vibration of composite beams using a refined shear flexible beam element. Computers & Structures, 43, (4), (1992), pp. 719–727. https://doi.org/10.1016/0045-7949(92)90514-z https://doi.org/10.1016/0045-7949(92)90514-z">

S. R. Marur and T. Kant. Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modelling. Journal of Sound and Vibration, 194, (3), (1996), pp. 337–351. https://doi.org/10.1006/jsvi.1996.0362 https://doi.org/10.1006/jsvi.1996.0362">

M. Karama, B. A. Harb, S. Mistou, and S. Caperaa. Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model. Composites Part B: Engineering, 29, (3), (1998), pp. 223–234. https://doi.org/10.1016/s1359-8368(97)00024-3 https://doi.org/10.1016/s1359-8368(97)00024-3">

G. Shi and K. Y. Lam. Finite element vibration analysis of composite beams based on higher-order beam theory. Journal of Sound and Vibration, 219, (4), (1999), pp. 707–721. https://doi.org/10.1006/jsvi.1998.1903 https://doi.org/10.1006/jsvi.1998.1903">

M. V. V. S. Murthy, D. R. Mahapatra, K. Badarinarayana, and S. Gopalakrishnan. A refined higher order finite element for asymmetric composite beams. Composite Structures, 67, (1), (2005), pp. 27–35. https://doi.org/10.1016/j.compstruct.2004.01.005 https://doi.org/10.1016/j.compstruct.2004.01.005">

P. Vidal and O. Polit. A family of sinus finite elements for the analysis of rectangular laminated beams. Composite Structures, 84, (1), (2008), pp. 56–72. https://doi.org/10.1016/j.compstruct.2007.06.009 https://doi.org/10.1016/j.compstruct.2007.06.009">

L. Jun and H. Hongxing. Free vibration analyses of axially loaded laminated composite beams based on higher-order shear deformation theory. Meccanica, 46, (6), (2011), pp. 1299–1317. https://doi.org/10.1007/s11012-010-9388-7 https://doi.org/10.1007/s11012-010-9388-7">

T. P. Vo and H. T. Thai. Static behavior of composite beams using various refined shear deformation theories. Composite Structures, 94, (8), (2012), pp. 2513–2522. https://doi.org/10.1016/j.compstruct.2012.02.010 https://doi.org/10.1016/j.compstruct.2012.02.010">

T. P. Vo and H. T. Thai. Vibration and buckling of composite beams using refined shear deformation theory. International Journal of Mechanical Sciences, 62, (1), (2012), pp. 67–76. https://doi.org/10.1016/j.ijmecsci.2012.06.001 https://doi.org/10.1016/j.ijmecsci.2012.06.001">

T. P. Vo, H. T. Thai, T. K. Nguyen, D. Lanc, and A. Karamanli. Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory. Composite Structures, 176, (2017), pp. 388–397. https://doi.org/10.1016/j.compstruct.2017.05.041 https://doi.org/10.1016/j.compstruct.2017.05.041">

M. Aydogdu. Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. International Journal of Mechanical Sciences, 47, (11), (2005), pp. 1740–1755. https://doi.org/10.1016/j.ijmecsci.2005.06.010 https://doi.org/10.1016/j.ijmecsci.2005.06.010">

J. L. Mantari and F. G. Canales. Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Composite Structures, 152, (2016), pp. 306–315. https://doi.org/10.1016/j.compstruct.2016.05.037 https://doi.org/10.1016/j.compstruct.2016.05.037">

T. K. Nguyen, N. D. Nguyen, T. P. Vo, and H. T. Thai. Trigonometric-series solution for analysis of laminated composite beams. Composite Structures, 160, (2017), pp. 142–151. https://doi.org/10.1016/j.compstruct.2016.10.033 https://doi.org/10.1016/j.compstruct.2016.10.033">

J. L. Mantari and J. Yarasca. A simple and accurate generalized shear deformation theory for beams. Composite Structures, 134, (2015), pp. 593–601. https://doi.org/10.1016/j.compstruct.2015.08.073 https://doi.org/10.1016/j.compstruct.2015.08.073">

J. N. Reddy. Mechanics of laminated composite plates: theory and analysis CRC press, (1997).




How to Cite

T.-K. Nguyen and N.-D. Nguyen, Effects of transverse normal strain on bending of laminated composite beams, Vietnam J. Mech. 40 (2018) 217–232. DOI: https://doi.org/10.15625/0866-7136/10959.



Research Article