Flood susceptibility modeling using Radial Basis Function Classifier and Fisher’s linear discriminant function

Chinh Luu, Duc Dam Nguyen, Mahdis Amiri, Tran Van Phong, Quynh Duy Bui, Indra Prakash, Binh Thai Pham
Author affiliations

Authors

  • Chinh Luu Faculty of Hydraulic Engineering, National University of Civil Engineering, Hanoi, Vietnam
  • Duc Dam Nguyen University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi, Vietnam
  • Mahdis Amiri Department of Watershed and Arid Zone Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-434, Iran
  • Tran Van Phong Institute of Geological Sciences, VAST, Hanoi, Vietnam
  • Quynh Duy Bui Department of Geodesy, National University of Civil Engineering, Hanoi, Vietnam
  • Indra Prakash DDG(R) Geological Survey of India, Gandhinagar 382015, India
  • Binh Thai Pham University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/16626

Keywords:

Radial Basis Function Classifier, Fisher’s linear discriminant function, Important variables, floods, Quang Binh

Abstract

Floods are among the most frequent highly disastrous hazards affecting life, property, and the environment worldwide. While various models are available to predict flood susceptibility, no model is accurate enough to be used for all flood-prone areas. Model development using different algorithms is a continuous process to improve the prediction accuracy of flood susceptibility. In the study, we used the Radial Basis Function and Fisher’s linear discriminant function to develop a flood susceptibility map for a case study of Quang Binh Province. The model development used ten variables (elevation, slope, curvature, river density, distance from river, geomorphology, land use, flow accumulation, flow direction, and rainfall). For model training and validation, input data was split into a 70:30 ratio according to flood locations. Statistical indexes were used to evaluate model performance such as Receiver Operating Characteristic, the Area Under the ROC Curve, Root Mean Square Error, Accuracy, Sensitivity, Specificity, and Kappa index. Results indicated that the radial basis function classifier model had better performance in predicting flood susceptible areas based on the statistical measures (PPV = 92.00%, NPV = 87.00%, SST = 87.62%, SPF = 91.58%, ACC = 89.50%, Kappa = 0.790, MAE = 0.204, RMSE = 0.292 and AUC = 0.957. Therefore, the radial basis function classifier algorithm model is appropriate for predicting flood susceptibility in Quang Binh Province.

Downloads

Download data is not yet available.

References

Agassi M., Morin J., Shainberg I., 1990. Slope, Aspect, and Phosphogypsum Effects on Runoff and Erosion. Soil Science Society of America Journal, 54(4), 1102-1106. https://doi.org/10.2136/sssaj1990.03615995005400040030x.

Ahmadlou M., Karimi M., Alizadeh S., Shirzadi A., Parvinnejhad D., Shahabi H., Panahi M., 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA).

Geocarto International, 34(11), 1252-1272. Doi: 10.1080/10106049.2018.1474276.

Arahal M.R., Berenguel M., 1998. Constructive Radial Basis Function Networks for Mobile Robot Positioning. IFAC Proceedings Volumes, 31(2), 181-186. https://doi.org/10.1016/S1474-6670(17)44193-0.

Avand M., Janizadeh S., Tien Bui D., Pham V.H., Ngo P.T.T., Nhu V.-H., 2020. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth, 13(12), 1408-1429. Doi: 10.1080/17538947.2020.1718785.

Brunner G.W., 1995. HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0.

Bui D.T., Ngo P.-T.T., Pham T.D., Jaafari A., Minh N.Q., Hoa P.V., Samui P., 2019. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179, 184-196. https://doi.org/10.1016/j.catena.2019.04.009.

Chen W., et al., 2019. Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences, 9(18), 3755. Retrieved from https://www.mdpi.com/2076-3417/9/18/3755.

Chen W., Hong H., Li S., Shahabi H., Wang Y., Wang X., Ahmad B.B., 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J. of Hydrology, 575, 864-873. https://doi.org/10.1016/j.jhydrol.2019.05.089.

Choubin B., Moradi E., Golshan M., Adamowski J., Sajedi-Hosseini F., Mosavi A., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ, 651(Pt2), 2087-2096. https://doi.org/10.1016/j.scitotenv.2018.10.064.

Convertino M., Annis A., Nardi F., 2019. Information-theoretic portfolio decision model for optimal flood management. Environmental Modelling & Software, 119, 258-274. https://doi.org/10.1016/j.envsoft.2019.06.013.

Costache R., et al., 2020. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. J Environ Manage, 265, 110485. https://doi.org/10.1016/j.jenvman.2020.110485.

Costache R., Zaharia L., 2017. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania). J. of Earth System Sci., 126(4), 59. Doi: 10.1007/s12040-017-0828-9.

Dano U.L., et al., 2019. Flood Susceptibility Mapping Using GIS-Based Analytic Network Process: A Case Study of Perlis, Malaysia. Water, 11(3), 615. Retrieved from https://www.mdpi.com/2073-4441/11/3/615.

Das S., 2019. Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14, 60-74. https://doi.org/10.1016/j.rsase.2019.02.006.

De Rosa P., Fredduzzi A., Cencetti C., 2019. Stream Power Determination in GIS: An Index to Evaluate the Most ’Sensitive’Points of a River. Water, 11(6), 1145. Retrieved from https://www.mdpi.com/2073-4441/11/6/1145.

Dottori F., Martina M.L.V., Figueiredo R., 2018. A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. Journal of Flood Risk Management, 11, S632-S645. https://doi.org/10.1111/jfr3.12234.

Frank E., 2014. Fully supervised training of Gaussian radial basis function networks in WEKA.

Fu X., Pace P., Aloi G., Yang L., Fortino G., 2020. Topology optimization against cascading failures on wireless sensor networks using a memetic

algorithm. Computer Networks, 177, 107327. https://doi.org/10.1016/j.comnet.2020.107327.

Gonzalez-Arqueros M.L., Mendoza M.E., Bocco G., Solis Castillo B., 2018. Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the Sierra-Costa region of Michoacan, Mexico. J Environ Manage, 223, 685-693. https://doi.org/10.1016/j.jenvman.2018.06.075.

Halgamuge M.N., Nirmalathas A., 2017. Analysis of large flood events: Based on flood data during 1985-2016 in Australia and India. International Journal of Disaster Risk Reduction, 24, 1-11. https://doi.org/10.1016/j.ijdrr.2017.05.011.

He Q., et al., 2019. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of The Total Environment, 663, 1-15. https://doi.org/10.1016/j.scitotenv.2019.01.329

Ince T., Kiranyaz S., Gabbouj M., 2012. Evolutionary RBF classifier for polarimetric SAR images. Expert Systems with Applications, 39(5), 4710-4717. https://doi.org/10.1016/j.eswa.2011.09.082.

Jaafari A., 2018. LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process. Environmental Earth Sciences, 77(2), 42. Doi: 10.1007/s12665-017-7207-3.

Khosravi K., et al., 2019. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 573, 311-323. https://doi.org/10.1016/j.jhydrol.2019.03.073.

Khosravi K., Nohani E., Maroufinia E., Pourghasemi H.R., 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947-987. Doi: 10.1007/s11069-016-2357-2.

Kim B., Sanders B.F., Famiglietti J., Guinot V., 2015. Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity. Journal of Environmental Hydrology, 523, 680-692. Doi: 10.1016/j.jhydrol.2015.01.059.

Li Y., Pont M.J., Barrie Jones N., 2002. Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where `unknown’ faults may occur. Pattern Recognition Letters, 23(5), 569-577. https://doi.org/10.1016/S0167-8655(01)00133-7.

Luu C., et al., 2021. GIS-Based Ensemble Computational models for Flood Susceptibility Prediction in the Quang Binh Province, Vietnam. Journal of Hydrology, 126500. https://doi.org/10.1016/j.jhydrol.2021.126500.

Luu C., von Meding J., Mojtahedi M., 2019. Analyzing Vietnam’s national disaster loss database for flood risk assessment using multiple linear regression-TOPSIS. International Journal of Disaster Risk Reduction, 40, 101153. https://doi.org/10.1016/j.ijdrr.2019.101153.

Lyu H.-M., Shen S.-L., Zhou A.-N., Zhou W.-H., 2019. Flood risk assessment of metro systems in a subsiding environment using the interval FAHP-FCA approach. Sustainable Cities and Society, 50, 101682. https://doi.org/10.1016/j.scs.2019.101682.

McCuen R.H., 2016. Modeling hydrologic change: statistical methods: CRC press.

Panahi M., et al., 2021. Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 12(3). Doi: 10.1016/j.gsf.2020.09.007.

Pandey V.K., Pourghasemi H.R., Sharma M.C., 2020. Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya. Geocarto International, 35(2), 168-187. Doi: 10.1080/10106049.2018.1510038.

Pham B.T., Bui D.T., Dholakia M.B., Prakash I., Pham H.V., Mehmood K., Le H.Q., 2017. A novel ensemble classifier of rotation forest and

Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomatics, Natural Hazards and Risk, 8(2), 649-671. Doi: 10.1080/19475705.2016.1255667.

Pham B.T., et al., 2020. A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial Naïve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping. Water, 12(1). Doi: 10.3390/w12010239.

Pham B.T., et al., 2021. Estimation of shear strength parameters of soil using Optimized Inference Intelligence System. Vietnam Journal of Earth Sciences, 43, 189-198.

Pham B.T., Shirzadi A., Tien Bui D., Prakash I., Dholakia M.B., 2018. A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 33(2), 157-170. https://doi.org/10.1016/j.ijsrc.2017.09.008.

Prăvălie R., Costache R.. 2014. The analysis of the susceptibility of the flash-floodsʼ genesis in the area of the hydrographical basin of Bâsca

Chiojdului river. Forum geografic, XIII(1), 39-49. Doi: 10.5775/fg.2067-4635.2014.071.i.

Qiao Y.-K., Peng F.-L., Wang Y., 2017. Monetary valuation of urban underground space: A critical issue for the decision-making of urban underground space development. Land Use Policy, 69, 12-24. https://doi.org/10.1016/j.landusepol.2017.08.037.

Razavi Termeh S.V., Kornejady A., Pourghasemi H.R., Keesstra S., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ, 615, 438-451. https://doi.org/10.1016/j.scitotenv.2017.09.262.

Roh S.-B., Oh S.-K., Pedrycz W., Seo K., Fu Z., 2019. Design methodology for Radial Basis Function Neural Networks classifier based on locally

linear reconstruction and Conditional Fuzzy C-Means clustering. International Journal of Approximate Reasoning, 106, 228-243. https://doi.org/10.1016/j.ijar.2019.01.008.

Saastamoinen A., Pietilä T., Värri A., Lehtokangas M., Saarinen J., 1998. Waveform detection with RBF network - Application to automated

EEG analysis. Neurocomputing, 20(1), 1-13. https://doi.org/10.1016/S0925-2312(98)00005-8.

Santangelo N., Santo A., Di Crescenzo G., Foscari G., Liuzza V., Sciarrotta S., Scorpio V., 2011. Flood susceptibility assessment in a highly urbanized alluvial fan: the case study of Sala Consilina (southern Italy). Natural Hazards and Earth System Sciences, 11(10), 2765-2780. Doi: 10.5194/nhess-11-2765-2011.

Savitha R., Suresh S., Sundararajan N., Kim H.J., 2012. A fully complex-valued radial basis function classifier for real-valued classification problems. Neurocomputing, 78(1), 104-110. https://doi.org/10.1016/j.neucom.2011.05.036.

Shafizadeh-Moghadam H., Valavi R., Shahabi H., Chapi K., Shirzadi A., 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ Manage, 217, 1-11. Doi: 10.1016/j.jenvman.2018.03.089.

Shahabi H., et al., 2021. Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 12(3), 101100. https://doi.org/10.1016/j.gsf.2020.10.007.

Shastry K.A., Sanjay H.A., Deexith G., 2017. Quadratic-radial-basis-function-kernel for classifying multi-class agricultural datasets with continuous attributes. Applied Soft Computing, 58, 65-74. https://doi.org/10.1016/j.asoc.2017.04.049.

Siahkamari S., Haghizadeh A., Zeinivand H., Tahmasebipour N., Rahmati O., 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto International, 33(9), 927-941. Doi: 10.1080/10106049.2017.1316780.

Singh C., Walia E., Kaur K.P., 2018. Enhancing color image retrieval performance with feature fusion and non-linear support vector

machine classifier. Optik, 158, 127-141. https://doi.org/10.1016/j.ijleo.2017.11.202.

Tehrany M.S., Pradhan B., Jebur M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332-343. https://doi.org/10.1016/j.jhydrol.2014.03.008.

Tien Bui D., et al., 2020. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of The Total Environment, 701, 134413. https://doi.org/10.1016/j.scitotenv.2019.134413.

Tran V.Q., Prakash I., 2020. Prediction of soil loss due to erosion using support vector machine model. Vietnam Journal of Earth Sciences, 42(3), 247-254. https://doi.org/10.15625/0866-7187/42/3/15050.

Van Phong T., Ly H.-B., Trinh P.T., Prakash I., Btjvjoes P., 2020. Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach. Vietnam Journal of Earth Sciences, 42(3), 237-246. https://doi.org/10.15625/0866-7187/42/3/15047.

Vogel K., Riggelsen C., Korup O., Scherbaum F., 2014. Bayesian network learning for natural hazard analyses. Natural Hazards and Earth

System Science, 14(9), 2605-2626. https://doi.org/10.5194/nhess-14-2605-2014.

Wang Q., Li W., Wu Y., Pei Y., Xie P., 2016. Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environmental Earth Sciences, 75(7), 599. Doi: 10.1007/s12665-016-5400-4.

Wang Y., et al., 2019. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage, 247, 712-729. Doi: 10.1016/j.jenvman.2019.06.102.

Whan K., Sillmann J., Schaller N., Haarsma R., 2020. Future changes in atmospheric rivers and extreme precipitation in Norway. Climate Dynamics, 54(3), 2071-2084.

Wu Y., Ke Y., Chen Z., Liang S., Zhao H., Hong H.. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA, 187, 104396. https://doi.org/10.1016/j.catena.2019.104396.

Wu Y., Wang H., Zhang B., Du K.L., 2012. Using Radial Basis Function Networks for Function Approximation and Classification. ISRN Applied Mathematics, 2012, 1-34. Doi: 10.5402/2012/324194.

Yang W., Xu K., Lian J., Ma C., Bin L., 2018. Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods. Ecological Indicators, 89, 269-280. https://doi.org/10.1016/j.ecolind.2018.02.015.

Yang Z., Mourshed M., Liu K., Xu X., Feng S., 2020. A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting. Neurocomputing, 397, 415-421. https://doi.org/10.1016/j.neucom.2019.09.110.

Young-Sup H., Sung-Yang B., 1997. Recognition of unconstrained handwritten numerals by a radial basis function neural network classifier. Pattern Recognition Letters, 18(7), 657-664. https://doi.org/10.1016/S0167-8655(97)00056-1.

Zenggang X., Zhiwen T., Xiaowen C., Xue-min Z., Kaibin Z., Conghuan Y., 2019. Research on Image Retrieval Algorithm Based on Combination of Color and Shape Features. Journal of Signal Processing Systems. Doi: 10.1007/s11265-019-01508-y.

Zhou Q., Mikkelsen P.S., Halsnæs K., Arnbjerg-Nielsen K., 2012. Framework for economic pluvial flood risk assessment considering

climate change effects and adaptation benefits. Journal of Hydrology, 414-415, 539-549. https://doi.org/10.1016/j.jhydrol.2011.11.031.

Zhu J., Shi Q., Wu P., Sheng Z., Wang X., 2018. Complexity Analysis of Prefabrication Contractors’ Dynamic Price Competition in Mega Projects with Different Competition Strategies. Complexity, 2018, 5928235. Doi: 10.1155/2018/5928235.

Zhu Y., Wang Z., Cao C., Gao D., 2018. Regularized fisher linear discriminant through two threshold variation strategies for imbalanced problems. Knowledge-Based Systems, 150, 57-73. https://doi.org/10.1016/j.knosys.2018.02.035.

Downloads

Published

12-10-2021

How to Cite

Luu, C. ., Dam Nguyen, D., Amiri, M. ., Tran Van, P., Duy Bui, Q. ., Prakash, I. ., & Thai Pham, B. . (2021). Flood susceptibility modeling using Radial Basis Function Classifier and Fisher’s linear discriminant function. Vietnam Journal of Earth Sciences, 44(1), 55–72. https://doi.org/10.15625/2615-9783/16626

Most read articles by the same author(s)