Fort-Dauphin beach sands, south Madagascar: natural radionuclides and mineralogical studies

Hao Duong Van, Alinanja Lantoarindriaka, Adam Piestrzyński, Phan Trong Trinh
Author affiliations

Authors

  • Hao Duong Van University of Mining and Geology, North Tu Liem, Hanoi, Vietnam
  • Alinanja Lantoarindriaka AGH University of Science and Technology, Krakow, Poland
  • Adam Piestrzyński AGH University of Science and Technology, Krakow, Poland
  • Phan Trong Trinh 1. Institute of Geological Sciences, Vietnam Academy of Science and Technology, VAST, Hanoi, Vietnam 2. Royal Academy for Oversea Sciences, Brussels, Belgium. 3. Graduate University of Science and Technology, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7187/42/2/14951

Keywords:

Fort-Dauphin beach sands, Natural radionuclides, disequilibrium, monazite, heavy minerals

Abstract

The Fort-Dauphin beach sand placer occurs as black sands on the East-South of Madagascar. The placer contributes 2/3 of the total heavy mineral resources of this country. The major minerals of the deposit are monazite, zircon, quartz, garnet, spinel, sillimanite as non-refractory minerals; ilmenite, anatase, rutile, titanite, leucoxene, pseudorutile and as a refractory one. The average concentration of the ilmenite, monazite, zircon and other minerals is 66.72%, 2.3%, 2.8%, and 28.18% respectively. Ilmenite contains 63 wt.% of TiO2, Zircon - 44 wt.% of ZrO2, Monazite contains 53 wt.% of oxide rare earth elements (REE) and up to 2 wt.% of UO2 and 9 wt.% of ThO2. The total REE in the studied samples was observed high concentration up to 16000ppm and a high ratio of Σ LREE/Σ HREE>31. The principal natural radionuclide in this placer is 232Th with the concentration of 232Th from 2710 to 6000 ppm, 3620 ppm on average while for the 238U from 124 to 340 ppm, 237 ppm on average which are higher than the average of their in Earth’s crust 360 and 70 times respectively.

Downloads

Download data is not yet available.

References

Abd E.W.M, El N.H.A., 2013. Radionuclides measurements and mineralogical studies on beach sands, East Rosetta Estuary, Egypt. Chin.J. Geochem., 32, 146–156.

Alam M.N., Chowdhury M.I., Kamal M., Ghose S., Islam M.N., Mustafa M.N., Miah M.M.H., Ansary M.M., 1999. The 226 Ra, 232 Th and 40 K activities in Beach Sand minerals and beach soils of Cox’s Bazar, Bangladesh. J. Environ. Radioact., 46, 243–250.

Alencar A.S and Freitas A.C., 2005. Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region. Radiation Measurements, 40, 76–83.

Almayahi B.A., Tajuddin A.A., Jaafar M.S., 2012. Effect of the natural radioactivity concentrations and 226 Ra/238U disequilibrium on cancer diseases in Penang, Malaysia. Radiation Physics and Chemistry., 81, 1547–1558.

Andriamanantena T., 2008. Evolution de la minéralisation en monazite le long de la vallée de l’Ifaho du massif de Manangotry (Chaines Anosyennes) jusqu’à la cote dans les environs de Taolagnaro, Ecole Supérieure Polytechnique d’Antananarivo, Dép. Géol. Mémoire de fin d’étude (in French).

Bazot G., 1974. Géologie de la Région de Fort Dauphin-Sainte Luce, Sud-Est de Madagascar, Service géologique Antananarivo. TBG, 142, 1–44 (in French).

De V.R.H., 1978. Uranium Geology and Exploration: Lecture Notes and References. Colorado School of Mines, Golden Colorado, 396p.

Dean M.H., Subhash J., Yanis M., 2011. The major rare-earth-element deposits of Australia: geological setting, exploration, and resources, 207p.

Elsner H., 2010. Heavy minerals of economic importance. Assessment manual. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (Federal Institute for Geosciences and Natural Resources), 218p.

Freitas A.C., Alencar A.S., 2004. Gamma dose rates and distribution of natural radionuclides in sand beaches, Ilha Grande Southeastern Brazil. J. Environ. Radioact., 75, 211–223.

ICRP, 1983. Radionuclide transformations. Publication of International Commission on Radiological Protection. ICRP-38, 11–13.

International Atomic Energy Agency, 1989. Measurement of radionuclides in food and the environment. Technical report series, IAEA, Vienna, 295.

Jodlowski P., 2006. Self-absorption correction in gamma-ray spectrometry of environmental samples - an overview of methods and correction values obtained for the selected geometries. Nukleonika, 51(2), 21–25.

Jodlowski P., Kalita S., 2010. Gamma-Ray Spectrometry Laboratory for high-precision measurements of radionuclide concentrations in environmental samples. Nukleonika, 55(2), 143−148.

Lacroix A., 1922. Minéralogie de Madagascar, Tomes 1, Paris, Challamel A. Ed. (in French).

Lange R., 1972, Geochemical Tables, Edition Leipzig.

Mohanty A.K., Das S.K., Van K.V., Sengupta D., Saha S. K., 2003a. Radiogenic heavy minerals in Chhatrapur beach placer deposit of Orissa, southeastern coast of India. Journal of Radioanalytical and Nuclear Chemistry, 258(2), 383–389.

Mohanty A.K., Das S.K., Van K.V., Sengupta D., Saha S.K., 2003b. Geochemical studies of monazite sands of Chhatrapur beach placer deposit of Orissa, India by PIXE and EDXRF method. Nuclear Instruments and Methods in Physics Research, B(211), 145–154.

Mohanty A.K., Sengupta D., Das S.K., Saha S.K., Van K.V., 2004. Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India. J. Environ. Radioact., 75, 15–33.

Nada, A., Abd E.M.T.M.,, Abu Z.H., El-Asy I.E., Mostafa S.M.I., Abd E.A S.A., 2012. Correlation between radionuclides associated with zircon and monazite in beach sand of Rosetta, Egypt. J Radioanal Nucl Chem., 291, 601–610.

NCRP, 1987. Exposure of the population of the United States and Canada from natural background radiation. Report No. 94. National Council on Radiation Protection and Measurements, Bethesda, Maryland.

Nguyen D.C., Jodlowski P., Kalita S.J, Olko P., Chrusciel F., Maksymowicz A., Waligorski M., Bilski P., Budzanowski M., 2008a. Natural radiation and its hazard in copper ore mines in Poland. Acta Geophysica, 56, 505–517.

Nguyen D.C., Michalec B., 2009. Natural radioactivity in bottled natural spring mineral, and therapeutic waters in Poland. J of Radioanalytical & Nuclear Chemistry, 279, 121–129.

Nguyen D.C., Phon L.K., Jodlowski P., Jadwiga P., Adam P., Hao D.V., Jakub N., 2016. Natural Radioactivity at the Sin Quyen iron oxide copper gold deposit in North Vietnam. Acta Geophysica (in press).

Papadopoulos A., Christofides G., Koroneos A., Stoulos S., 2014a. Natural radioactivity distribution and gamma radiation exposure of beach sands from Sithonia Peninsula. Central Eur. J. Geosci., 6(2), 229–242.

Papadopoulos A., Koroneos A., Christofides G., Papadopoulou L., Tzifas I., Stoulos S., 2016. Assessment of gamma radiation exposure of beach sands in highly touristic areas associated with plutonic rocks of the Atticocycladic zone (Greece). Journal of Environmental Radioactivity, 162, 235–243.

Papadopoulos A., Koroneos A., Christofides G., Stoulos S., 2014b. Natural radioactivity distribution and gamma radiation exposure of beach sands close the granitoids of NE Chalkidiki, Greece. In: Proceedings of the 10th International Congress of the Hellenic Geographical Society, 805–814.

Papadopoulos A., Koroneos A., Christofides G., Stoulos S., 2015a. Natural radioactivity distribution and gamma radiation exposure at beach sands close to Kavala pluton, Greece. Open J. Geosci., 1, 407–422.

Papadopoulos A., Koroneos A., Christofides G., Stoulos S., 2015b. Natural radioactivity distribution and gamma radiation exposure of beach sands close to Maronia and Samothraki plutons, NE. Greece. Geol. Balc., 43(1e3), 99–107.

Pownceby and Johnson, 2014. Geometallurgy of Australian uranium deposits. Ore Geology Reviews, 56, 25–44.

Qu L., Yao D., Cong P., Xia N., 2008. Radioactivity concentrations in soils in the Qingdao area, China [J]. Annals of the New York Academy of Sciences: Environmental Challenges in the Pacific Basin., 1140, 308−314.

Sengupta D., Mohantya A.K., Das S.K., Saha S.K., 2005. Natural radioactivity in the high background radiation area at Erasama beach placer deposit of Orissa, India. International Congress Series., 1276, 210–211.

Strezov A., Nonova T., 2009. Influence of macroalgal diversity on accumulation of radionuclides and heavy metals in Bulgarian Black Sea ecosystems. Journal of Environ. Radioact., 100, 144−150.

Sulekha R.D., Sengupta R., Guin S.K., 2009. Natural radioactivity measurements in beach sand along southern coast of Orissa, eastern India. Environ Earth Sci., 59, 593–601.

Takayuki S., Mohammad R., Masafumi A., Taishi K., Ikuji T., Toshiyuki F., Mashrur Z.M., 2015. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh. Natural Resources Research., 24(2), 209–220.

Downloads

Published

09-05-2020

How to Cite

Van, H. D., Lantoarindriaka, A., Piestrzyński, A., & Trinh, P. T. (2020). Fort-Dauphin beach sands, south Madagascar: natural radionuclides and mineralogical studies. Vietnam Journal of Earth Sciences, 42(2), 118–129. https://doi.org/10.15625/0866-7187/42/2/14951

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>