INFLUENCE OF DYNAMIC PROCESSES ON MORPHOLOGICAL CHANGE IN THE COASTAL AREA OF MEKONG RIVER MOUTH
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/16/1/8016Keywords:
Morphological change, Mekong, morfac, modelling, dynamics.Abstract
This paper presents some results on the influences of dynamic processes on morphological change in the Mekong river mouth area. The roles of these dynamic processes were assessed by the MORFAC (the morphological acceleration factor) method (Delft3D model) and analysis of 50 scenarios. Study results show that wave and river are dominant factors impacting on sediment transport and morphological change in the study area. In case of calm wave-wind, the interaction between river and tides creates deposition zones. Significant wave height in the range of 1 - 3 m is important factor that affects morphological changes in Mekong coastal area. The sediment accumulation in the flood season is the temporary distribution of sediments from the river. After flood season, sediments in the seabed are re-distributed and transported by the influences of dynamic processes in the condition of the lack of sediments. As a result, it creates the morphological change in the dry season.Downloads
Metrics
References
Lesser, G. R., Roelvink, J. A., Van Kester, J. A. T. M., and Stelling, G. S., 2004. Development and validation of a three-dimensional morphological model. Coastal engineering, 51(8): 883-915. DOI: https://doi.org/10.1016/j.coastaleng.2004.07.014
Roelvink, J. A., 2006. Coastal morphodynamic evolution techniques. Coastal Engineering, 53(2): 277-287. DOI: https://doi.org/10.1016/j.coastaleng.2005.10.015
Lesser, G. R., 2009. An approach to medium-term coastal morphological modelling. UNESCO-IHE, Institute for Water Education.
Tonnon, P. K., Van Rijn, L. C., and Walstra, D. J. R., 2007. The morphodynamic modelling of tidal sand waves on the shoreface. Coastal Engineering, 54(4): 279-296. DOI: https://doi.org/10.1016/j.coastaleng.2006.08.005
Jones, O. P., Petersen, O. S., and Kofoed-Hansen, H., 2007. Modelling of complex coastal environments: some considerations for best practise. Coastal Engineering, 54(10): 717-733. DOI: https://doi.org/10.1016/j.coastaleng.2007.02.004
Dissanayake, D. M. P. K., Ranasinghe, R., and Roelvink, J. A., 2009. Effect of sea level rise in tidal inlet evolution: A numerical modelling approach. Journal of Coastal Research, 942-946.
Van der Wegen, M., and Roelvink, J. A., 2008. Long‐term morphodynamic evolution of a tidal embayment using a two‐dimensional, process‐based model. Journal of Geophysical Research: Oceans (1978-2012), 113(C3). DOI: https://doi.org/10.1029/2006JC003983
Van der Wegen, M., Wang, Z. B., Savenije, H. H. G., and Roelvink, J. A., 2008. Long‐term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research: Earth Surface (2003-2012), 113(F3). DOI: https://doi.org/10.1029/2007JF000898
Van Duin, M. J. P., Wiersma, N. R., Walstra, D. J. R., Van Rijn, L. C., and Stive, M. J. F., 2004. Nourishing the shoreface: observations and hindcasting of the Egmond case, The Netherlands. Coastal Engineering, 51(8): 813-837. DOI: https://doi.org/10.1016/j.coastaleng.2004.07.011
Grunnet, N. M., Ruessink, B. G., and Walstra, D. J. R., 2005. The influence of tides, wind and waves on the redistribution of nourished sediment at Terschelling, The Netherlands. Coastal Engineering, 52(7): 617-631. DOI: https://doi.org/10.1016/j.coastaleng.2005.04.001
Walstra, D. J. R., Hoekstra, R., Tonnon, P. K., and Ruessink, B. G., 2013. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coastal Engineering, 77, 57-70. DOI: https://doi.org/10.1016/j.coastaleng.2013.02.001
Milliman, J. D., and Syvitski, J. P., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 525-544. DOI: https://doi.org/10.1086/629606
Nguyen, V. L., Ta, T. K. O., and Tateishi, M., 2000. Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. Journal of Asian Earth Sciences, 18(4): 427-439. DOI: https://doi.org/10.1016/S1367-9120(99)00076-0
Nguyễn Văn Lập, Tạ Thị Kim Oanh, 2012. Đặc điểm trầm tích bãi triều và thay đổi đường bờ biển khu vực ven biển tỉnh Cà Mau, châu thổ sông Cửu Long. Tạp chí các Khoa học về Trái đất, 34(3): 1-9.
Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., Tanabe, S., and Saito, Y., 2002. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quaternary Science Reviews, 21(16): 1807-1819. DOI: https://doi.org/10.1016/S0277-3791(02)00007-0
Xue, Z., He, R., Liu, J. P., and Warner, J. C., 2012. Modeling transport and deposition of the Mekong River sediment. Continental Shelf Research, 37, 66-78. DOI: https://doi.org/10.1016/j.csr.2012.02.010
Vũ Duy Vĩnh, Trần Đình Lân, Trần Anh Tú, Nguyễn Thị Kim Anh, 2014. Mô phỏng đặc điểm biến động địa hình vùng cửa sông ven bờ sông Mê Kông. Tạp chí Khoa học và Công nghệ biển, 14(3A): 31-42. DOI: https://doi.org/10.15625/1859-3097/14/2/4480
Wolanski, E., Nhan, N. H., and Spagnol, S., 1998. Sediment dynamics during low flow conditions in the Mekong River estuary, Vietnam. Journal of Coastal Research, 472-482.
Wolanski, E., Huan, N. N., Nhan, N. H., and Thuy, N. N., 1996. Fine-sediment dynamics in the Mekong River estuary, Vietnam. Estuarine, Coastal and Shelf Science, 43(5): 565-582. DOI: https://doi.org/10.1006/ecss.1996.0088
Nguyễn Ngọc Thụy, 1982. Thủy triều đồng bằng sông Cửu Long và vùng biển kế cận. Báo cáo tại Hội thảo Quốc tế về xâm nhập mặn ở ĐBSCL, 22-27/10/1982 tại thành phố Hồ Chí Minh.
Le Dinh Mau Nguyen Van Tuan, 2014. Estimation of wave characteristics in East Vietnam Sea usingwam model. Journal of Marine Science and Technology, 14(3): 212-218. DOI: https://doi.org/10.15625/1859-3097/14/3/5158
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace G., and Weatherall, P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4): 355-371. DOI: https://doi.org/10.1080/01490410903297766
Merri T Jone, Pauline W., Raymond N. Cramer, 2009. User Guide to the centernary edition of the GEBCO digital atlas and its datasets. Natural Environment Research Council.
BMT Argoss, 2011. Overview of the service and validation of the database. Reference: RP_A870, www.waveclimate.com.
Lefevre, F., Lyard, F. H., Le Provost, C., and Schrama, E. J., 2002. FES99: a global tide finite element solution assimilating tide gauge and altimetric information. Journal of Atmospheric and Oceanic Technology, 19(9): 1345-1356. DOI: https://doi.org/10.1175/1520-0426(2002)019<1345:FAGTFE>2.0.CO;2
Lyard, F., Lefevre, F., Letellier, T., and Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5-6): 394-415. DOI: https://doi.org/10.1007/s10236-006-0086-x
Boyer, T. (Ed.), Mishonov, A. (Technical Ed.), 2013. World Ocean Atlas 2013 Product Documentation. Ocean Climate Laboratory, NODC / NESDIS / NOAA. Silver Spring, MD 20910-3282.
Delft Hydraulics, 2014. Delft3D-FLOW User Manual: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Technical report.
Battjes, J. A., and Janssen, J. P. F. M., 1978. Energy loss and set-up due to breaking of random waves. Coastal Engineering Proceedings, 1(16). DOI: https://doi.org/10.9753/icce.v16.32
Arcement, G. J., and Schneider, V. R., 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains (38 p.). Washington, DC, USA: US Government Printing Office.
Simons, D. B., and Şentürk, F., 1992. Sediment transport technology: water and sediment dynamics. Water Resources Publication.
Uittenbogaard, R. E., 1998. Model for eddy diffusivity and viscosity related to sub-grid velocity and bed topography. Note, WL| Delft Hydraulics.
Van Vossen, B., 2000. Horizontal large eddy simulations; evaluation of computations with DELFT3D-FLOW. Report MEAH-197. Delft University of Technology.
Van Run, L., 1993. Principles of Sediment Transport in Rivers. Estuaries, and Coastal Seas, Aqua Publica tions, Delft Hydraulics, The Netherlands.
Dissanayake, D. M. P. K., Roelvink, J. A., and Van der Wegen, M., 2009. Modelled channel patterns in a schematized tidal inlet. Coastal Engineering, 56(11): 1069-1083. DOI: https://doi.org/10.1016/j.coastaleng.2009.08.008
Li, L., 2010. A fundamental study of the Morphological Acceleration Factor (Doctoral dissertation, TU Delft, Delft University of Technology).
Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., Stive, M., and Walstra, D., 2011. Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities. Coastal engineering, 58(8): 806-811. DOI: https://doi.org/10.1016/j.coastaleng.2011.03.010
Masselink, G., Hughes, M. G., and Knight, J., 2011. Introduction to Coastal Processes and Geomorphology. 2nd edition, London, UK: Hodder Education.
Dyer, K., 1986. Coastal and estuarine sediment dynamics. Chichester: Wiley.
Yang, S. L., Friedrichs, C. T., Shi, Z., Ding, P. X., Zhu, J., and Zhao, Q. Y., 2003. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm. Estuaries, 26(6): 1416-1425. DOI: https://doi.org/10.1007/BF02803650
Goodbred, S. L., and Hine, A. C., 1995. Coastal storm deposition: salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology, 23(8): 679-682. DOI: https://doi.org/10.1130/0091-7613(1995)023<0679:CSDSMR>2.3.CO;2
Nyman, J. A., Crozier, C. R., and DeLaune, R. D., 1995. Roles and patterns of hurricane sedimentation in an estuarine marsh landscape. Estuarine, Coastal and Shelf Science, 40(6): 665-679. DOI: https://doi.org/10.1006/ecss.1995.0045