Fluctuation of associated microbial with building reef corals \(\textit{Acropora}\) sp. from Hang Rai, Ninh Thuan

Authors

  • Pham Thi Mien Institute of Oceanography, VAST, Vietnam
  • Nguyen Kim Hanh Institute of Oceanography, VAST, Vietnam
  • Phan Minh Thu Institute of Oceanography, VAST, Vietnam
  • Nguyen Minh Hieu Institute of Oceanography, VAST, Vietnam
  • Vo Hai Thi Institute of Oceanography, VAST, Vietnam
  • Nguyen Trinh Duc Hieu Institute of Oceanography, VAST, Vietnam
  • Hoang Trung Du Institute of Oceanography, VAST, Vietnam
  • Nguyen Huu Huan Institute of Oceanography, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/17235

Keywords:

Symbiotic microalgae, bacteria, Acropora sp., environmental factors, Ninh Thuan.

Abstract

El Niño and the prolonged warm sea surface temperature significantly impacted coral reefs and caused coral bleaching in some parts of the world. This study evaluated the density of symbiotic algae and bacteria associated with the three coral species, namely Acropora hyacinthus, Acropora muricata, and Acropora robusta, collected in Hang Rai, Ninh Thuan in May, June, August 2016, and June 2017. The number of zooxanthellae with each coral species was statistically significant and correlated with several environmental factors, suggesting that symbiotic algae could play a key role in coral health. The number of associated microbial with the three coral species was significantly different; they tended to depend on sampling time rather than coral species-specific. At the time of ENSO (2016), the difference in the total associated bacteria with all three coral species was statistically significant. While the total number of related bacteria with all three species of coral collected in 2017 did not differ from the total of bacteria in ambient water. In conclusion, symbiotic algae tend to be species-specific, whereas bacteria fluctuate significantly over sampling time. Studying the molecular issues of microalgae, the presence, the role of some groups of bacteria involved in the N, C, P, and S cycles, and the influence of environmental parameters should also be encouraged to understand the relationship of coral holobiont better.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Blackall, L. L., Wilson, B., and Van Oppen, M. J., 2015. Coral—the world's most diverse symbiotic ecosystem. Molecular Ecology, 24(21), 5330–5347. https://doi.org/10.1111/mec.13400 DOI: https://doi.org/10.1111/mec.13400

[2] Boulotte, N. M., Dalton, S. J., Carroll, A. G., Harrison, P. L., Putnam, H. M., Peplow, L. M., and Van Oppen, M. J., 2016. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. The ISME journal, 10(11), 2693–2701. https://doi.org/10.1038/ismej.2016.54 DOI: https://doi.org/10.1038/ismej.2016.54

[3] Berkelmans, R., and Van Oppen, M. J., 2006. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences, 273(1599), 2305–2312. doi: 10.1098/rspb.2006.3567 DOI: https://doi.org/10.1098/rspb.2006.3567

[4] Silverstein, R. N., Cunning, R., and Baker, A. C., 2015. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global change biology, 21(1), 236–249. doi: 10.1111/gcb.12706 DOI: https://doi.org/10.1111/gcb.12706

[5] Tun, K., Chou, L. M., Low, J., Yeemin, T., Phongsuwan, N., Setiasich, N., Wilson, J., Amri, A. Y., Adzis, K. A. A., Lane, D., Bochove, J. W. V., Kluskens, B., Nguyen, V. L., Vo, S. T., and Gomez, E., 2010. Status of Coral reefs in East Asian Seas region: 2010. A regional overview on the 2010 coral bleaching event in Southeast Asia, 9–26.

[6] Ampou, E. E., Johan, O., Menkès, C. E., Niño, F., Birol, F., Ouillon, S., and Andréfouët, S., 2017. Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall. Biogeosciences, 14(4), 817–826. https://doi.org/10.5194/bg-14-817-2017 DOI: https://doi.org/10.5194/bg-14-817-2017

[7] Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I., 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5(5), 355–362. https://doi.org/10.1038/nrmicro1635 DOI: https://doi.org/10.1038/nrmicro1635

[8] Kvennefors, E. C. E., Sampayo, E., Kerr, C., Vieira, G., Roff, G., and Barnes, A. C., 2012. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microbial ecology, 63(3), 605–618. https://doi.org/10.1007/s00248-011-9946-0 DOI: https://doi.org/10.1007/s00248-011-9946-0

[9] Shnit-Orland, M., Sivan, A., and Kushmaro, A., 2012. Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microbial ecology, 64(4), 851–859. https://doi.org/10.1007/s00248-012-0086-y DOI: https://doi.org/10.1007/s00248-012-0086-y

[10] Ritchie, K. B., 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1–14. doi: 10.3354/meps322001 DOI: https://doi.org/10.3354/meps322001

[11] Kushmaro, A., Rosenberg, E., Fine, M., and Loya, Y., 1997. Bleaching of the coral Oculina patagonica by Vibrio AK-1. Marine Ecology Progress Series, 147, 159–165. doi: 10.3354/meps147159 DOI: https://doi.org/10.3354/meps147159

[12] Ben-Haim, Y., and Rosenberg, E., 2002. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Marine Biology, 141(1), 47–55. https://doi.org/10.1007/s00227-002-0797-6 DOI: https://doi.org/10.1007/s00227-002-0797-6

[13] Patterson, K. L., Porter, J. W., Ritchie, K. B., Polson, S. W., Mueller, E., Peters, E. C., Santavy, D. L., and Smith, G. W., 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proceedings of the National Academy of Sciences, 99(13), 8725–8730. https://doi.org/10.1073/pnas.09226009 DOI: https://doi.org/10.1073/pnas.092260099

[14] Liang, J., Yu, K., Wang, Y., Huang, X., Huang, W., Qin, Z., Pan, Z., Yao, Q., Wang, W., and Wu, Z., 2017. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Frontiers in Microbiology, 8, 979. https://doi.org/10.3389/fmicb.2017.00979 DOI: https://doi.org/10.3389/fmicb.2017.00979

[15] Gizzi, F., de Mas, L., Airi, V., Caroselli, E., Prada, F., Falini, G., Dubinsky, Z., and Goffredo, S., 2017. Reproduction of an azooxanthellate coral is unaffected by ocean acidification. Scientific reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-13393-1 DOI: https://doi.org/10.1038/s41598-017-13393-1

[16] Meunier, V., Bonnet, S., Pernice, M., Benavides, M., Lorrain, A., Grosso, O., Lambert, C., and Houlbrèque, F., 2019. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. The ISME journal, 13(11), 2882–2886. doi: 10.1038/s41396-019-0456-2 DOI: https://doi.org/10.1038/s41396-019-0456-2

[17] Mien, P. T., Hanh, N. K., Hieu, N. M., Thu, P. M., Du, H. T., Thi, V. H., Duc Hieu, N. T., Dung, L. T., and Huan, N. H., 2019. A study on bacteria associated with three hard coral species from Ninh Thuan waters by epifluorescence and most diluted culture method. Vietnam Journal of Marine Science and Technology, 19(2), 271–283. https://doi.org/10.15625/1859-3097/10814 DOI: https://doi.org/10.15625/1859-3097/19/2/10814

[18] Leruste, A., Bouvier, T., and Bettarel, Y., 2012. Enumerating viruses in coral mucus. Applied and environmental microbiology, 78(17), 6377–6379. https://doi.org/10.1128/AEM.01141-12 DOI: https://doi.org/10.1128/AEM.01141-12

[19] Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics, 857–871. https://doi.org/10.2307/2528823 DOI: https://doi.org/10.2307/2528823

[20] Team, R. C., 2012. R: A language and environment for statistical computing. http://www. R-project. org.

[21] Hendrickson, J., 2014. Methods for clustering mixed data. Doctoral dissertation, University of South Carolina.

[22] Sorokin, Y. I., 2013. Coral reef ecology (Vol. 102). Springer Science & Business Media.

[23] Bourne, D., Iida, Y., Uthicke, S., and Smith-Keune, C., 2008. Changes in coral-associated microbial communities during a bleaching event. The ISME journal, 2(4), 350–363. https://doi.org/10.1038/ismej.2007.112 DOI: https://doi.org/10.1038/ismej.2007.112

[24] Lien, Y. T., Fukami, H., and Yamashita, Y., 2012. Symbiodinium clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan. Zoological science, 29(3), 173–180. https://doi.org/10.2108/zsj.29.173 DOI: https://doi.org/10.2108/zsj.29.173

[25] Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D., and H. van Oppen, M. J., 2004. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular ecology, 13(8), 2445–2458. https://doi.org/10.1111/j.1365-294X.2004.02230.x DOI: https://doi.org/10.1111/j.1365-294X.2004.02230.x

[26] Bellantuono, A. J., Hoegh-Guldberg, O., and Rodriguez-Lanetty, M., 2012. Resistance to thermal stress in corals without changes in symbiont composition. Proceedings of the Royal Society B: Biological Sciences, 279(1731), 1100–1107. https://doi.org/10.1098/rspb.2011.1780 DOI: https://doi.org/10.1098/rspb.2011.1780

[27] Nguyen-Kim, H., Bettarel, Y., Bouvier, T., Bouvier, C., Doan-Nhu, H., Nguyen-Ngoc, L., Nguyen-Thanh, T., Tran-Quang, H., and Brune, J., 2015. Coral mucus is a hot spot for viral infections. Applied and Environmental Microbiology, 81(17), 5773–5783. https://doi.org/10.1128/AEM.00542-15 DOI: https://doi.org/10.1128/AEM.00542-15

[28] Raina, J. B., Dinsdale, E. A., Willis, B. L., and Bourne, D. G., 2010. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends in microbiology, 18(3), 101–108. https://doi.org/10.1016/j.tim.2009.12.002 DOI: https://doi.org/10.1016/j.tim.2009.12.002

[29] Raina, J. B., Tapiolas, D., Willis, B. L., and Bourne, D. G., 2009. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and environmental microbiology, 75(11), 3492–3501. https://doi.org/10.1128/AEM.02567-08 DOI: https://doi.org/10.1128/AEM.02567-08

[30] Meron, D., Atias, E., Iasur Kruh, L., Elifantz, H., Minz, D., Fine, M., and Banin, E., 2011. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. The ISME journal, 5(1), 51–60. https://doi.org/10.1038/ismej.2010.102 DOI: https://doi.org/10.1038/ismej.2010.102

[31] Meron, D., Rodolfo-Metalpa, R., Cunning, R., Baker, A. C., Fine, M., and Banin, E., 2012. Changes in coral microbial communities in response to a natural pH gradient. The ISME journal, 6(9), 1775–1785. https://doi.org/10.1038/ismej.2012.19 DOI: https://doi.org/10.1038/ismej.2012.19

[32] Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., and Yossi, L., 2009. The role of microorganisms in coral bleaching. The ISME journal, 3(2), 139–146. https://doi.org/10.1038/ismej.2008.104 DOI: https://doi.org/10.1038/ismej.2008.104

[33] Rachanamol, R. S., Lipton, A. P., Thankamani, V., Sarika, A. R., and Selvin, J., 2014. Molecular characterization and bioactivity profile of the tropical sponge-associated bacterium Shewanella algae VCDB. Helgoland marine research, 68(2), 263–269. https://doi.org/10.1007/s10152-014-0386-3 DOI: https://doi.org/10.1007/s10152-014-0386-3

Downloads

Published

21-06-2022

How to Cite

Pham, T. M., Nguyen, K. H., Phan, M. T., Nguyen, M. H., Vo, H. T., Nguyen Trinh, D. H., Hoang, T. D., & Nguyen , H. H. (2022). Fluctuation of associated microbial with building reef corals \(\textit{Acropora}\) sp. from Hang Rai, Ninh Thuan. Vietnam Journal of Marine Science and Technology, 22(2), 177–188. https://doi.org/10.15625/1859-3097/17235

Issue

Section

Articles