Metabolites from the soft coral -associated bacterium \(\textit{Micrococcus}\) sp. strain a-2-28

Pham Thi Mien, Jutta Wiese, Dao Viet Ha
Author affiliations

Authors

  • Pham Thi Mien Institute of Oceanography, VAST, Vietnam
  • Jutta Wiese GEOMAR, Helmholtz Centre for Ocean Research Kiel- Düsternbrooker Weg 20, D-24105 Kiel, Germany
  • Dao Viet Ha Institute of Oceanography, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/18414

Keywords:

Micrococcus sp., coral-associated, metabolites, compound purification, bioassays.

Abstract

The marine actinomyces Micrococcus was the most common bacterium among the isolates corals, sponges, and alga isolates. Only a few investigations of natural compounds from Micrococcus sp. were reported previously. This study implicated the soft coral-associated Micrococcus sp. strain A-2-28 (following relative Micrococcus flavus LW4T) for large-scale cultivation, chemical analyses, and biological activities. Whereas crude extract of the strain A-2-28 inhibited only Staphylococcus epidermidis, metabolites profiles and pure compounds from strain A-2-28 showed that this strain produced phytohormone (IAA), metabolized some new compounds which were almost inactive for biological tests. This work suggested that it is possible to plan a new strategy for improving coral health and resilience though their associated microbial.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Rocha, J., Peixe, L., Gomes, N. C., and Calado, R., 2011. Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Marine drugs, 9(10), 1860–1886.

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I., 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5(5), 355–362.

Imhoff, J. F., Labes, A., and Wiese, J., 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnology advances, 29(5), 468–482.

Freestone, P., 2013. Communication between bacteria and their hosts. Scientifica, 2013, 361073.

Ali, B., Sabri, A. N., Ljung, K., and Hasnain, S., 2009. Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Letters in applied microbiology, 48(5), 542–547.

Leyser, O., 2010. The power of auxin in plants. Plant Physiology, 154(2), 501–505.

Dar, G. H., SOFI, S., Padder, S. A., and Kabli, A., 2018. Molecular characterization of rhizobacteria isolated from walnut (Juglans regia) rhizosphere in Western Himalayas and assessment of their plant growth promoting activities. Biodiversitas Journal of Biological Diversity, 19(2), 662–669.

Shahzad, R., Waqas, M., Khan, A. L., Al-Hosni, K., Kang, S. M., Seo, C. W., and Lee, I. J., 2017. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biologica Hungarica, 68(2), 175–186.

Patel, P., Patel, K., Dhandhukia, P., and Thakker, J. N., 2021. Plant growth promoting traits of marine Micrococcus sp. with bio-control ability against Fusarium in chickpea plant. Vegetos, 34, 94–101.

Li, J., Zou, Y., Yang, J., Li, Q., Bourne, D. G., Sweet, M., Liu, C., Guo, A., and Zhang, S., 2022. Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome. Msystems, 7(4), e00327–22.

Pham, T. M., Wiese, J., Wenzel-Storjohann, A., and Imhoff, J. F., 2016. Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea. Antonie Van Leeuwenhoek, 109, 105–119.

Schneemann, I., Kajahn, I., Ohlendorf, B., Zinecker, H., Erhard, A., Nagel, K., Wiese, J., and Imhoff, J. F., 2010. Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. Journal of natural products, 73(7), 1309–1312.

Jansen, N., Ohlendorf, B., Erhard, A., Bruhn, T., Bringmann, G., and Imhoff, J. F., 2013. Helicusin E, isochromophilone X and isochromophilone XI: new chloroazaphilones produced by the fungus Bartalinia robillardoides strain LF550. Marine Drugs, 11(3), 800–816.

Schulz, D., Beese, P., Ohlendorf, B., Erhard, A., Zinecker, H., Dorador, C., and Imhoff, J. F., 2011. Abenquines A–D: Aminoquinone derivatives produced by Streptomyces sp. strain DB634. The Journal of antibiotics, 64(12), 763–768.

Ohlendorf, B., Schulz, D., Erhard, A., Nagel, K., and Imhoff, J. F., 2012. Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species. Journal of Natural Products, 75(7), 1400–1404.

Baki, A., Bielik, A., Molnár, L., Szendrei, G., and Keserü, G. M., 2007. A high throughput luminescent assay for glycogen synthase kinase-3β inhibitors. Assay and drug development technologies, 5(1), 75–84.

Helaly, S., Schneider, K., Nachtigall, J., Vikineswary, S., Tan, G. Y. A., Zinecker, H., Imhoff, J. F., Süssmuth, R. D., and Fiedler, H. P., 2009. Gombapyrones, new α-pyrone metabolites produced by Streptomyces griseoruber Acta 3662. The Journal of Antibiotics, 62(8), 445–452.

Abe, H., Uchiyama, M., and Sato, R., 1972. Isolation and identification of native auxins in marine algae. Agricultural and Biological Chemistry, 36(12), 2259–2260.

Hoshino, T., Hayashi, T., and Odajima, T., 1995. Biosynthesis of violacein: oxygenation at the 2-position of the indole ring and structures of proviolacein, prodeoxyviolacein and pseudoviolacein, the plausible biosynthetic intermediates of violacein and deoxyviolacein. Journal of the Chemical Society, Perkin Transactions 1, (12), 1565–1571.

Nadig, H., and Sèquin, U., 1987. Isolation and Structure Elucidation of Some Components of the Antitumor Antibiotic Mixture ‘Rubiflavin’. Helvetica chimica acta, 70(4), 1217–1228.

Misono, Y., Ishikawa, Y., Yamamoto, Y., Hayashi, M., Komiyama, K., and Ishibashi, M., 2003. Dihydrolindbladiones, three new naphthoquinone pigments from a myxomycete Lindbladia tubulina. Journal of natural products, 66(7), 999–1001.

Krohn, K., Michel, A., Flörke, U., Aust, H. J., Draeger, S., and Schulz, B., 1994. Biologically active metabolites from fungi, 4. palmarumycins CP1–CP4 from Coniothyrium palmarum: isolation, structure elucidation, and biological activity. Liebigs Annalen der Chemie, 1994(11), 1093–1097.

Palomo, S., González, I., De la Cruz, M., Martín, J., Tormo, J. R., Anderson, M., Hill, R. T., Vicente, F., Reyes, F., and Genilloud, O., 2013. Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin. Marine drugs, 11(4), 1071–1086.

Downloads

Published

08-06-2023

How to Cite

Pham , T. M., Wiese, J., & Dao Viet Ha, D. V. H. (2023). Metabolites from the soft coral -associated bacterium \(\textit{Micrococcus}\) sp. strain a-2-28. Vietnam Journal of Marine Science and Technology, 23(2), 181–188. https://doi.org/10.15625/1859-3097/18414

Issue

Section

Articles

Most read articles by the same author(s)