Effect of Cr\(^{3+}\) Concentration and Heat-treating Temperature on Structural Property of Cr\(^{3+}\)- doped TiO\(_2\) Nanowires Synthesized by Hydrothermal Method

Authors

  • Trinh Thi Loan Faculty of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
  • Nguyen Ngoc Long Faculty of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/24/4/4180

Keywords:

TiO2, Cr3 Nanowires, Hydrothermal method, Structural property

Abstract

Anatase Ti1-xCrxO2 nanowires with Cr3+ dopant contents ranging from x = 0 to 0.1 have been successfully synthesized by hydrothermal method. The nanowires were prepared from anatase titanium dioxide powder (TiO2), chrome nitrate (Cr(NO3)3), and sodium hydroxide (NaOH). The effect of the Cr3+ concentration and heat-treating temperature on structure, morphology of the synthesized Ti1-xCrxO2 samples has been studied by X-ray diffraction, scanning electron microscopy and Raman scattering. At low heat-treating temperature (≤ 600 oC), the samples exhibited anatase phase and in the Raman spectra of samples with x ≥ 0.01 exhibited a new series peak at 120, 236, 250, 292, 362, 430, 467 and 550 cm-1, which were assigned to the localized vibrational modes related to the complexes containing Cr3+ ion. But at high heat-treating temperature (1100 oC), the samples exhibited rutile phase, in the Raman spectra the above-mentioned peak series did not appear, instead of this, only observed shifting and broadening of characteristic Raman modes (Eg and M) for rutile TiO2 with increasing Cr3+ dopant content, which proves that the Cr3+ ions have replaced the Ti4+ ions in the rutile TiO2 host lattice. The lattice constants of both the rutile and anatase TiO2 crystallites have been hardly affected by Cr3+ ions dopant contents.

Downloads

Download data is not yet available.

References

M.M.B. Abbad, A. A. H. Kadhum, A. B. Mohanad, M. S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7 (2012) 4871.

J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Applied Catalysis B: Environmental 62 (2006) 329.

H.S. Hafez, M. Saif, J.T. McLeskey, M.S.A.A. Mottaleb, I.S. Yahia, T. Story, and W. Knoff, Int. J. Photoenergy, Vol. 2009, Article ID 240402, 8 pages.

W.J. Yin, S. Chen, J.H. Yang, X.G. Gong, Y. Yan, and S.H. Wei, Appl. Phys. Lett. 96 (2010) 221901.

K.B.Jaimy, S.Ghosh, S.Sankar, K.G.K.Warrier, Materials Research Bulletin 46 (2011) 914.

A. Trenczek-Zajac, M. Radecka, M. Jasinski, K.A. Michalow, M. Rekas, E. Kusior, K. Zakrzewska, A. Heel, T. Graule, K. Kowalski, J. Power Sources 194 (2009) 104.

H.G. Yang, H.C. Zeng, J. Am. Chem. Soc. 127 (2005) 270.

T. Ohsaka, E. Izumi, Y. Fujiki, J. Raman Spectrosc. 7 (1978) 321.

C.Y. Xu, P.X. Zhang and L. Yan, J. Raman Spectrosc. 32 (1980) 862.

H.C. Choi, Y.M. Jung, S.B. Kim, Vibrational Spectroscopy 35 (2005) 33.

O. Monnereau, L. Tortet, C. E. A. Grigorescu, D. Savastru, C. R. Iordanescu, F. Guinneton, R. Notonier, A. Tonetto, T. Zhang, I. N. Mihailescu, D. Stanoi, H.J. Trodahl, J. Optoelectr. Adv. Mater. 12 (2010) 1752.

T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska, J. Baran, M. Marchewwka, J. Molecular Structure 614 (2002) 315.

G.D. Bromiley, A.A. Shirya, Phys. Chem. Minerals 33 (2006) 426.

B. Santara, B. Pal, and P.K. Giri, J. Appl. Phys. 110 (2011) 114322.

T. Lan, X. Tang, and B. Fultz, Phys. Rev. B 85 (2012) 094305.

Downloads

Published

13-03-2015

How to Cite

Loan, T. T., & Long, N. N. (2015). Effect of Cr\(^{3+}\) Concentration and Heat-treating Temperature on Structural Property of Cr\(^{3+}\)- doped TiO\(_2\) Nanowires Synthesized by Hydrothermal Method. Communications in Physics, 24(4), 353. https://doi.org/10.15625/0868-3166/24/4/4180

Issue

Section

Papers