Vol. 29 No. 3 (2019)

Influence of Mn\(^{2+}\) Doping on Structural Phase Transformation and Optical Property of TiO\(_2\):Mn\(^{2+}\) Nanoparticles

Published 13-08-2019


  • TiO2,
  • Mn2 ,
  • sol-gel method,
  • transformation,
  • photoluminescence

How to Cite

Loan, T. T., & Long, N. N. (2019). Influence of Mn\(^{2+}\) Doping on Structural Phase Transformation and Optical Property of TiO\(_2\):Mn\(^{2+}\) Nanoparticles. Communications in Physics, 29(3), 251. https://doi.org/10.15625/0868-3166/29/3/13854


Titanium dioxide (TiO2) nanoparticles with various Mn2+-doping concentration (from 0 to 12 mol%) were successfully synthesized by the sol–gel method using titanium tetrachloride (TiCl4), and manganese II chloride tetrahydrate (MnCl2.4H2O)  as precursors. The phase and crystallinity of the synthesized materials were investigated by powder X-ray diffraction pattern and Raman spectroscopy. Diffuse reflection and photoluminescence spectra were taken to investigate the absorption and emission characteristics of the synthesized samples. The results show that the anatase and rutile phases existed simultaneously in all the doping TiO2 nanoparticles and the Mn2+ doping enhances anatase-rutile transformation. The Mn2+ contents did not affect the lattice of TiO2 host, but affected positions of its Raman modes. The optical band gap of the TiO2:Mn2+ decreases with the increase of doping concentration. Photoluminescence spectra of the TiO2:Mn2+ nanopaticles showed the transitions between the bands, the transitions related to defect states and the Mn2+ ion doping leads to quenching the photoluminescence.


Download data is not yet available.


Metrics Loading ...


  1. C. Gratzel and S. M. Zakeeruddin, Recent trends in mesoscopic solar cells based on molecular and nanopigment, Materials Today 16, 11-18 (2013).
  2. W. M. M. Mahmoud, T. Rastogi, K. Kümmerer, Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water, Current Opinion in Green and Sustainable Chemistry 6, 1-10 (2017).
  3. X. Wang, M. Fujimaki, and K. Awazu, Photonic crystal structures in titanium dioxide (TiO2) and their optimal design, Optics Express 13, 1486-1497 (2005).
  4. W. Maziarz, A. Kusior and A. Trenczek-Zajac, Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases, Beilstein J. Nanotechnol. 7, 1718-1726 (2016).
  5. M. Mikami and K. Ozaki, Thermoelectric properties of nitrogen-doped TiO2-x compounds, J. Phys.: Conf. Ser. 379, 012006 (2012).
  6. S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique, Appl Nanosci 5, 449-456 (2015).
  7. V.D. Binas, K. Sambani, T. Maggos, A. Katsanaki, G. Kiriakidis, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, Applied Catalysis B: Environmental 113-114, 79-86 (2012).
  8. Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity, Materials Letters 65, 2051-2054 (2011).
  9. A. Mahmood, S. M. Ramay, Y. S. Al-Zaghayer, S. Atiq, M. Saleem, W. A. A. Masary, and S. Haider, Synthesis, structural and magnetic behavior of undoped and Mn-doped anatase TiO2 nanoparticles Modern Physics Letters B 29, 1550015 (2015).
  10. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32, 751-767 (1976).
  11. R. A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem. 29, 760-762 (1957).
  12. L. Gomathi Devi, S. Girish Kumar, B. Narasimha Murthy, Nagaraju Kottam, Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photocatalytic activity under solar illumination, Catalysis Communications 10, 794-798 (2009).
  13. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci. 46, 855-874 (2011).
  14. J. Tian, H. Gao, H. Kong, P. Yang, W. Zhang and J. Chu, Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process, Nanoscale Research Letters 8, 533 (2013).
  15. R. R. Talavera, S . Vargas, R. A. Murillo, R. M. Campos, E. H. Poniatowski, Modification of the phase transition temperatures in titania doped with various cations, J. Mater. Res. 12, 439-443 (1997).
  16. T. Ohsaka, E. Izumi, Y. Fujiki, Raman Spectrum of Anatase TiO, J. Raman Spectrosc. 7, 321-324 (1978).
  17. B. Santara, P. K. Giri, K. Imakita and M. Fujii, Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures, J. Phys. D: Appl. Phys. 47, 215302 (2014).
  18. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B 5, 3144-3151 (1972).
  19. N. Daude, C. Gout, C. Jouanin, Electronic band structure of titanium dioxide, Phys. Rev. B 15, 3229-3235 (1977).
  20. D Reyes-Coronado, G Rodrıguez-Gattorno, M E Espinosa-Pesqueira, C Cab, R de Coss and G Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology 19, 145605 (2008).
  21. Trinh Thi Loan, Nguyen Ngoc Long, Effect of Co2+ doping on Raman spectra and the phase transformation of TiO2:Co2+ nanowires, Journal of Physics and Chemistry of Solids 124, 336-342 (2019).
  22. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2, Nat. Mater. 12, 798-801 (2013).
  23. Yaqin Wang, Ruirui Zhang, Jianbao Li, Liangliang Li, Shiwei Lin, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett. 9, 46 (2014).
  24. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909-1920 (2002).
  25. A.K. Tripathi, M.C. Mathpal, P. Kumar, V. Agrahari, M.K. Singh, S.K. Mishra, M.M. Ahmad, A. Agarwal, Photoluminescence and photoconductivity of Ni doped titania nanoparticles, Adv. Mater. Lett. 6, 201-208 (2015).
  26. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method, J. Alloy. Compd. 553, 19-29 (2013).
  27. B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles, Int. Nano Lett. 3, 1-8 (2013).
  28. K. Vos and H. J. Krusemeyer, Low temperature electroreflectance of TiO2, Solid State Commun.15, 949-952 (1974).
  29. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Room temperature photoluminescence of anatase and rutile TiO2 powders, J. Lumin. 146, 199-204 (2014).
  30. V. Jovic, Z.H.N. Al-Azri, W.T. Chen, D. Sun-Waterhouse, H. Idriss, G.I.N. Waterhouse, Photocatalytic H2 production from ethanol-water mixtures over Pt/TiO2 and Au/TiO2 Photocatalysts: A comparative study, Top. Catal. 56, 1139-1151 (2013).
  31. N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287-24293 (2006).