Papers
Thermodynamic Properties of Free Standing Thin Metal films Investigated Using Statistical Moment Method: Temperature and Pressure Dependence
Published 22-07-2014
Keywords
- moment method,
- thermodynamic properties,
- high pressure,
- equation of state,
- thin film
How to Cite
Hung, V. V., Phuong, D. D., & Hoa, N. T. (2014). Thermodynamic Properties of Free Standing Thin Metal films Investigated Using Statistical Moment Method: Temperature and Pressure Dependence. Communications in Physics, 24(2), 177. https://doi.org/10.15625/0868-3166/24/2/3731
Abstract
The moment method in statistical dynamics \textit{(SMM)} is used to study thermodynamic properties of free standing thin metal films with face-centered cubic structure (fcc) taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion coefficient, and specific heats at the constant volume and those at the constant pressure, \(C_V\) and \(C_P\) of the metal thin films are derived in closed analytic forms in terms of the power moments of the atomic displacements. The thermodynamic quantities of Au, Ag, Cu and Al metal thin films are calculated as a function of the temperature and pressure, and they are in good agreement with the corresponding results obtained from other theoretical calculations and experimental values. The effective pair potentials work well for the calculations of fcc metal thin films.Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
References
- L. H. Liang. and B. Li, Physical Review B, 73 (15) (2006), 153303
- Z. Kolska et al., Materials Letters, Materials Letters, 64 (2010), 1160-1162
- H. Kahn et al., J. Mater. Res., 17 (7) (2002), 1855-1862
- Z. Mei-Qiong et al., Chin. Phys. Lett., 25 (2) (2008), 563
- F. S. Tehrani et al., J. Mater Sci: Mater Electron, (2012), doi 10.1007/s10854-012-0934-z
- Feng Gao et al., Tribol Lett., 31 (2008), 99–106, doi 10.1007/11249-008-9342-1
- Can Wang et al., Thin Solid Films 485 (2005), 82– 89
- J.A. Pérez et al., J. Phys.: Conf. Ser., 274 (1) (2011), 012119 doi:10.1088/1742-6596/274/1/012119
- Ju-Hyung Kim et al., Organic Electronics, 11 (2010), 964–968
- C. R. Cho et al., Cryst. Res. Technol., 30 (6) (1995), 873-880
- K. S. Rothenberger et al., Jour. Memb. Sci., 244 (1–2) (2004), 55–68
- N. Tang and V. V. Hung: Phys. Status Solidi B, 149 (1988), 511
- N. Tang and V. V. Hung: Phys. Status Solidi B, 161 (1990), 165
- V. V. Hung and N. T. Hai: Int. J. Mod. Phys. B, 12 (1998) 191
- V. V. Hung, D. D. Phuong and N. T. Hoa, Com. Phys., 23 (4) (2013), 301–311
- R. B. Capaz, G. C. de AraD újo, B. Koiller and J. P. von der Weid: J. Appl. Phys., 74 (1993), 5531
- M. N. Mazomedov, J. Fiz. Khimic, 61 (1987), 1003
- Madan Singh et al., Nanoscience and Nanotechnology, 2 (6) (2012), 20–207
- Madan Singh, Moruti Kao., Advances in Nanoparticles, 2 (2013), 350–357
- R Kumar and Munish Kumar., Indian Journal of Pure and Appl. Phys., 51 (2013), 87–93
- V. V. Hung and N. T. Hoa: AJSTD Issues 23 (1-2) (2006), 27-42
- O. Kraft and W. D. Nix., Journal of Appl. Phys., 83 (1998), 3035-3038
- R.O. Simmons and R.W. Balluffi, Phys. Rev., 117 (1960), 52
- N. T. Hoa, Doctor of Philosophy Thesis, HNUE., (2007)