Vol. 24 No. 2 (2014)
Papers

Thermodynamic Properties of Free Standing Thin Metal films Investigated Using Statistical Moment Method: Temperature and Pressure Dependence

Vu Van Hung
Vietnam Education Publishing House
Duong Dai Phuong
Tank Armour Officers Training School, Tam Duong, Vinh Phuc
Nguyen Thi Hoa
Fundamental Science Faculty, University of Transport and Communications

Published 22-07-2014

Keywords

  • moment method,
  • thermodynamic properties,
  • high pressure,
  • equation of state,
  • thin film

How to Cite

Hung, V. V., Phuong, D. D., & Hoa, N. T. (2014). Thermodynamic Properties of Free Standing Thin Metal films Investigated Using Statistical Moment Method: Temperature and Pressure Dependence. Communications in Physics, 24(2), 177. https://doi.org/10.15625/0868-3166/24/2/3731

Abstract

The moment method in statistical dynamics \textit{(SMM)} is used to study thermodynamic properties of free standing thin metal films with face-centered cubic structure (fcc) taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion coefficient, and specific heats at the constant volume and those at the constant pressure, \(C_V\) and \(C_P\)  of the metal thin films are derived in closed analytic forms in terms of the power moments of the atomic displacements. The thermodynamic quantities of Au, Ag, Cu and Al metal thin films are calculated as a function of the temperature and pressure, and they are in good agreement with the corresponding results obtained from other theoretical calculations and experimental values. The effective pair potentials work well for the calculations of fcc metal thin films.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. L. H. Liang. and B. Li, Physical Review B, 73 (15) (2006), 153303
  2. Z. Kolska et al., Materials Letters, Materials Letters, 64 (2010), 1160-1162
  3. H. Kahn et al., J. Mater. Res., 17 (7) (2002), 1855-1862
  4. Z. Mei-Qiong et al., Chin. Phys. Lett., 25 (2) (2008), 563
  5. F. S. Tehrani et al., J. Mater Sci: Mater Electron, (2012), doi 10.1007/s10854-012-0934-z
  6. Feng Gao et al., Tribol Lett., 31 (2008), 99–106, doi 10.1007/11249-008-9342-1
  7. Can Wang et al., Thin Solid Films 485 (2005), 82– 89
  8. J.A. Pérez et al., J. Phys.: Conf. Ser., 274 (1) (2011), 012119 doi:10.1088/1742-6596/274/1/012119
  9. Ju-Hyung Kim et al., Organic Electronics, 11 (2010), 964–968
  10. C. R. Cho et al., Cryst. Res. Technol., 30 (6) (1995), 873-880
  11. K. S. Rothenberger et al., Jour. Memb. Sci., 244 (1–2) (2004), 55–68
  12. N. Tang and V. V. Hung: Phys. Status Solidi B, 149 (1988), 511
  13. N. Tang and V. V. Hung: Phys. Status Solidi B, 161 (1990), 165
  14. V. V. Hung and N. T. Hai: Int. J. Mod. Phys. B, 12 (1998) 191
  15. V. V. Hung, D. D. Phuong and N. T. Hoa, Com. Phys., 23 (4) (2013), 301–311
  16. R. B. Capaz, G. C. de AraD újo, B. Koiller and J. P. von der Weid: J. Appl. Phys., 74 (1993), 5531
  17. M. N. Mazomedov, J. Fiz. Khimic, 61 (1987), 1003
  18. Madan Singh et al., Nanoscience and Nanotechnology, 2 (6) (2012), 20–207
  19. Madan Singh, Moruti Kao., Advances in Nanoparticles, 2 (2013), 350–357
  20. R Kumar and Munish Kumar., Indian Journal of Pure and Appl. Phys., 51 (2013), 87–93
  21. V. V. Hung and N. T. Hoa: AJSTD Issues 23 (1-2) (2006), 27-42
  22. O. Kraft and W. D. Nix., Journal of Appl. Phys., 83 (1998), 3035-3038
  23. R.O. Simmons and R.W. Balluffi, Phys. Rev., 117 (1960), 52
  24. N. T. Hoa, Doctor of Philosophy Thesis, HNUE., (2007)